
Additional Materials for Iaso Paper Submission

(Anonymized)

1 Introduction

We make our datasets public in [1]. This document provides

additional materials to our Iaso paper submission. We un-

derstand that the materials included in this document cannot

be accounted for in the review process. However, we include

this for interested readers/reviewers.

2 Iaso System

This section describes the cluster and machine configura-

tions in our deployments and then uncovers the relationship

between the number of fail-slow faults and these configura-

tions.

Cluster Analysis: Table 1 gives an overview of the hard-

ware configurations of 7 representative clusters. The ma-

chines come from the deployments at our customer envi-

ronments, whose cluster size ranges from a minimum of 3

to a maximum of 56. Different cluster sizes exhibit differ-

ent characteristics. First of all, the numbers of HDDs and

SSDs are different due to the various cluster sizes (a roughly

increasing trend). Secondly, the memory, CPU and NIC

configurations are various in a certain range. Specially, the

memory size is between 125GB and 512GB, the number of

CPU is either 8 or 10 or 12. Likewise, the number of NIC

is 2 or 4 or 6. Overall, this heterogeneity in our clusters is

introduced for a couple of reasons:

• The first is system design, which needs to support het-

erogeneous applications which can result in nodes with

different storage types (flash to storage heavy) or mem-

ory or cpu configurations.

• The second is system upgrade, which requires compo-

nents replacement and upgrade. It’s common that new

components get added to clusters over a period of time.

To study the heterogeneity effects on the fail-slow faults,

Figure ?? shows all six root causes (unknown, network,

hardware, software, human and environment) among dif-

ferent cluster sizes. As we can see, 3-node cluster con-

tributes to 31 fail-slow failures, which stands in the first

place. One of the possible explanations is that cluster size

3 is the most common size in our deployments. Likewise,

other small-scale clusters are dominant factors of fail-slow

ID #Node #HDD #SSD MEM #CPU #NIC

1 3 6 6 125 8 6

2 4 14 8 - 8/12 2/4

3 5 0 30 384 12 4

4 6 36 12 512 8 6

5 16 64 28 - 8/12 4

6 19 66 27 256 8/10 4

7 26 104 52 256 8/12 4/6

Table 1: Hardware configurations of a sample set of clus-

ters. ”-” means a combination of different memory sizes (unit

GB, e.g, cluster 2 contains 128GB, 256GB, and 512GB memory;

cluster 5 only contains 128GB and 256GB memory).

failures. Overall, sizes 3-8 take up 85% faults, but sizes

9-56 just have 15%. Meanwhile, fail-slow causes are var-

ious among these clusters. First of all, network and hard-

ware are the most common causes for different cluster sizes.

There are 8 and 9 clusters sizes involve network and hard-

ware causes, respectively. Secondly, software failures only

occur in small scale cluster (#N<10), one possibility is that

large-scale clusters have more redundancies to tolerate soft-

ware failures. Finally, human errors distribution is random,

which just matches with its own random characteristics.

Machine Analysis: In addition to above cluster character-

istics, our machine nodes show different hardware character-

istics. In our deployments, we notice some machine nodes

with similar configurations, which are possible to be in the

same cluster or different clusters. Regarding this, we intro-

duce a new term ”node model family” to represent them.

Table 2 shows the different node model family configura-

tions, where A-H have different processor, memory, HDD,

SSD and network adaptor configurations. In our experience,

one node model family typically contains 3 to 8 nodes. This

small scale difference motivates us to further investigate the

node family’s hardware configuration effects on the fail-slow

failures. Figure ?? shows the failure distribution for differ-

ent node families, where family B has the most failures and

family D vice versa. The interesting thing is family B repre-

sents the most storage heavy family but family D is opposite.

From this point, we can figure out the correlated relationship

between the number of failures and node families. In ad-

dition, when it comes to the failure causes, all of them are

common. This might be a clue of no significant correlation

1



 0

 5

 10

 15

 20

 25

 30

 35

3 4 5 6 7 8 9 10 11 12 19 26 56

N
um

be
r 

of
 F

au
lts

Size of Cluster (# of Nodes)

Unknown
Network

Hardware
Software

Human
Environment

Figure 1: fig-faultCluster: Fail-stutter faults across dif-

ferent cluster sizes.

between the fail-slow failures causes and node family mod-

els.

 0

 5

 10

 15

 20

A B C D E F G H

N
um

be
r 

of
 F

au
lts

Model Families

Faults over Model Families

Figure 2: fig-faultModels: Fail-stutter faults across

model families.

3 False Positives and Negatives

3.1 False Positives

False positive is to mark a good/down node as fail-slow. This

section will introduce two false positive stories.

Case1 In our Zookeeper score reporting system, one node

randomly picks up about 7 peer nodes to monitor for ev-

ery 2 minutes. The node will send RPC requests to these

peer nodes and measure the RPC round trip time, which will

be assigned as a score. Once the RPC request times out,

the node will get a default score 2000ms, which is the de-

fault timeout value. If the peer node L couldn’t respond in

2000ms, the node continues keeping a sliding window of the

last 10 scores for the peer node L, which looks like {2000,

2000, ... , 2000}. In the ScoreDB, if 70 percentile scores

for peer node L are 2000ms, our score detection system will

mark the node as down instead of fail-slow. Even if a po-

tential fail-slow is alive, the score analysis system waits for

the peer node to be up for a certain time (e.g., 4mins in our

system) before marking it as fail-slow. This ensures that if

the node received bad scores due to the node is down or just

rebooted, we don’t label it as fail-slow. In this case, our

score analysis system waits for the peer node L to receive

good scores in the next 4 minutes. However, if none of the

nodes choose the peer node L to monitor (randomly picks up

7 nodes), then our score analysis system will never get any

good score for the peer node L and incorrectly mark it as

fail-slow.

Case 2 In our score reporting system, the Zookeeper in-

stance on one node is unreachable due to the degraded NIC.

Then, many services will restart if they lose the Zookeeper

sessions. In this case, other peers of the degraded node

restarted, which triggers the lose of their previous state of

the number of timeouts and responses. Then the node for

which this node was replica for, started to timeout sporadi-

cally because it could not reach the degraded node, leading

the healthy node to receive higher scores and eventually be-

ing marked as degraded.

3.2 False Negatives

False negative is not to mark a degraded node as fail-slow.

This section will describe three false negatives cases.

Case 1 Our score reporting and analysis systems highly

reply on the ScoreDB. The former stores the reported peer

scores in the ScoreDB and the latter analyzes these scores

to detect the outlier. In our Zookeeper score reporting sys-

tem, if the Zookeeper leader is a fail-slow node (e.g., CPU

soft lockup), it leads to the write pipeline blocked. However,

Zookeeper’s internal ping mechanism bypasses the write

pipeline, which makes the followers not detect that they have

to detach from the fail-slow leader. In this case, Zookeeper

is not available and then the score reporting and analysis sys-

tems could not work well.

Case 2 In our Cassandra score reporting system, there is

a node with network packet loss issues due to a faulty NIC,

which will cause the Cassandra instance on that node to time-

out most requests from its peers. And this degraded node has

not provided even a single successful response. Hence this

node was not part of the set of nodes for which the peers re-

ported scores for. In this case, it seriously leads to the cluster

2



Model Family Processor Memory HDD SSD Network Adaptor

A 2.40GHz 6-cr Haswell E5-2620 v3 15M Cache 96 4TB 3.5” 800GB 3.5-C” 10GbE Dual SFP+

B 2.4GHz 10-cr Brdwl E5-2640 v4 25M Cache 512 6TB 3.5” 1.6TB 3.5” 1GbE Dual Base-T

C 1.7GHz 8-cr Brdwl E5-2609 v4 20M Cache 64 2TB 3.5” 480GB 3.5” 10GbE Dual SFP+

D 2.1GHz 8-cr Brdwl E5-2620 v4 20M Cache 64 2TB 3.5” 480GB 3.5” 10GbE Dual SFP+

E 2.60GHz 10-cr Haswell E5-2660 v3 25M Cache 384 2TB 2.5” 1200GB 2.5-C” 10GbE Dual SFP+

F 2.4GHz 14-cr Brdwl E5-2680 v4 35M Cache 512 2TB 3.5” 1.2TB 2.5” 10GbE Dual SFP+

G 3.50GHz 4-cr Haswell E5-2637v3 15M Cache 512 6TB 3.5” 1600GB 3.5-C” 10GbE Dual SFP+

H 2.4GHz 10-cr Brdwl E5-2640 v4 25M Cache 256 6TB 3.5” 1.2TB 2.5” 10GbE Dual SFP+

Table 2: tab-family: Hardware configurations of a sample set of node model families.

outage because the actual degraded node was not quaran-

tined.

Case 3 The Cassandra score reporting system is dependent

on the uniformity of requests to neighbors based on its DHT

nature. In the case of idle cluster, if the number of requests

and responses is not sufficient high, the degraded node may

receive less or even zero IO compared to other good nodes.

This leads to other nodes to slow down and falsely marks one

of them as degraded.

4 Versions

Our versions v1 to v5 merely correspond to our software re-

lease cycles. Based on the current release, we stages our

changes and fixes. The following is a short summary of the

description of the versions and the justification on why it is

needed to improve the previous version.

• V1 (4.5) This version is mainly for evaluation. It con-

tains score reporting and score analysis, but the actions

to quarantine a degraded node are disabled. We are able

to collect the degraded node scores from customer clus-

ters and check whether the observed high scores (if any)

were indicative of real problems.

• V2 (4.6) This version fixes some implementation re-

lated issues, which mostly exist in the score analysis

algorithm.

• V3 (4.7) This version acts as four roles: (1) it prevents

Cassandra from performing node addition if the node

was marked degraded; (2) it aligns the interval to mea-

sure local disk write latency in Zookeeper with the peer

rpc interval; (3) it does not mark a node as degraded if

our fault tolerance (FT) is already 0 in a cluster which

supports the FT of 1; (4) it fixes an implementation bug

to discontinue isolation actions if the degraded flag has

been unset.

• V4 (5.0) This version moves degraded Cassandra node

to a forwarding mode (but disable via flag).

Year All Outages Fail-slow Outages With Iaso

2014 8 2 -

2015 11 2 -

2016 19 12 -

2017 23 8 7

2018 12 1 38

Table 3: Comparisons of outages (§5). The table shows the

number of outages before and after the deployment of Iaso (columns

2 and 4) and the number of outages caused by fail-slow failures

(column 3)

• V5 (5.1) This version solves three : (1) it fixes a bug in

C* score reporting that is exposed when a node has no

degraded scores if it starts up in such an unhealthy state

that it has 0 healthy response; (2) it enables degraded

node detection and takes degraded node action by de-

fault; (3) it modifies Zookeeper’s selection logic to add

weights while selecting peers to monitor. Zookeeper

doesn’t select all other peers to monitor, it is possible

that some peers never got selected by anyone in a par-

ticular window, which leads to a false positive.

5 Past Outages

The outages in our clusters occur now and then. Table 3

shows the outage frequencies in the past 5 years. As we

can see, the number of outages is increasing every year (e.g.,

from 8 to 23). One of the reasons is that there are more

nodes/clusters deployed, which increases the possibility to

have more outages. However, we have deployed Iaso for

more than 1.5 years in our customers sites (from 2017),

which makes the number of outages decrease to some extend

in 2017 and 2018.

Once outages are reported, our site-reliability engineers

(SREs) perform the full diagnosis. Some of the outages are

due to fail-slow incidents but some are not. For example, in

2014, there are 8 full outages (IOPS went to zero), just 2 of

which are caused by fail-slow.

With Iaso deployment, the number of fail-slow outages

3



PID MEM CPU

1 23MB 0.1

2 55MB 0.2

Table 4: Iaso Overhead (§6). The table shows the memory

and cpu consumption before and after the Iaso deployment

started to decrease. Since Iaso was deployed in 2017, the

number of outages in 2016 and 2017 would be representative

to illustrate the Iaso effectiveness. As we see, there are 12

fail-slow outages in 2016 but just 8 fail-slow outages in 2017.

Meanwhile, with the development of Iaso, we just have one

fail-slow outage in 2018.

6 Overhead

The overhead of our score reporters is mostly negligible as

they piggyback on existing score collection metrics used by

the application. We will illustrate the overhead regarding to

the memory and cpu consumptions in Table 4, where PID

1 is a Zookeeper monitor process that doesnt run the score

analysis algorithm (we run it on multiple nodes but not all

nodes, only the ones that are Zookeeper nodes). On the con-

trary, PID 2 is a Zookeeper monitor process that does the

score analysis (as part of the Zookeeper monitor process).

Regarding to the resident memory consumed (RES), PID 1

is around 23MB, but PID 2 is 55MB. The thing to note here

is that the nodes on which we do score analysis as part of

the Zookeeper monitor process also do a couple of other un-

related things. Therefore, the 55MB is still like an upper

bound. When it comes to CPU consumption, we can see the

CPU used for PID 1 is 0.1 and for PID 2 is 0.2, which are

both negligible.

7 Future Work

In our paper, we have described a generic design to build

a heuristic-based fail-slow fault tolerant distributed appli-

cation. As with majority of such systems, we have certain

areas that can be improved. A few of those are as follows:

• Tuning fail-slow node detection interval: Currently

we have conservatively chosen the fail-slow node de-

tection time interval to be 10 minutes based on internal

testing, mainly because of the of the high impact of false

positives. However, we could safely determine the pres-

ence of a fail-slow fault in less than 10 minutes. Given

that we now have the feature deployed in the field for

a large number of clusters, we intend to mine the peer

scores reported in the field and internally run our score

processing engine on them with various fail-slow node

detection intervals. Once we obtain the false positive

rate for various fail-slow node detection intervals, we

will be able to pick a more aggressive value as our fault

detection interval, and detect and mitigate the effect of

a fail-slow node quickly.

• Enable score reporting for other services: Currently

only the Metadata Service and the Cluster Configura-

tion Manager report scores in our system. Since the

causes for a fail-slow fault can be diverse and varied,

we intend to enable score reporting for other critical ser-

vices such as our cluster block storage system and the

background cluster management service.

• Automatically detect fail-slow node recovery: Cur-

rently we depend on the user to mark that the fail-slow

fault has been resolved in the cluster configuration. In-

stead, we intend to allow the peers of the fail-slow node

to continue reporting scores for the faulty node, and use

them to determine whether the node has recovered. This

will help if the fail-slow fault was a transient network

failure. In such cases, being able to automatically detect

the recovery of a fail-slow node will be highly useful.

4



References

[1] Iaso Datasets. https://tinyurl.com/Iaso-datasets,

2019.

5

https://tinyurl.com/Iaso-datasets

