Fantastic SSD Internals and How to Learn and Use Them

Nanqinqin Li
University of Chicago and Princeton University

Mingzhe Hao
University of Chicago

Huaicheng Li
University of Chicago and Carnegie Mellon University

Xing Lin
NetApp

Tim Emami
NetApp

Haryadi S. Gunawi
University of Chicago

ABSTRACT
This work presents (a) Queenie, an application-level tool that can automatically learn 10 internal properties of block-level SSDs, (b) Kelpie, the learning and analysis results of running Queenie on 21 different SSD models from 7 major SSD vendors, and (c) Newt, a set of storage performance optimization examples that use the learned properties. By bringing numerous observations and unique findings, this work exposes substantial improvement spaces for both SSD users and vendors, enlightening possibilities of unleashing more SSD performance potential and highlighting the necessity of further exploring SSD internals.

CCS CONCEPTS
• General and reference → Empirical studies; Measurement; • Information systems → Flash memory.

KEYWORDS
Solid-State Drive, Performance Characterization

1 INTRODUCTION
Solid-State Drives (SSDs) are a cornerstone of modern storage systems because of their competitive performance, reliability, capacity, and cost [2, 13, 19, 33, 41, 46]. However, while fulfilling user’s increasing demands on storage, modern SSDs also bring their own challenges: it is difficult to optimally utilize them as most of them show up as black-box devices, with internal complexities such as FTL mapping, write buffer management, and garbage collection mechanisms, hidden and intangible from their users [21, 23, 26, 29, 49, 50].

These complexities, unfortunately, can bring non-negligible side-effects, with performance inconsistency as one of the notorious ramifications. For example, write buffer flush can contend with reads on NAND resources and bring long latency tails [10, 19, 39]; reads with inappropriate alignment can take extra overhead to process as SSDs apply minimal unit of access [31, 32]; some SSDs are designed for certain purposes, and when used inappropriately, can dramatically downgrade the overall system performance [5, 30].

Motivated to resolve these negative impacts, multiple pieces of prior work [12, 28, 30–32] try to extract crucial SSD properties and propose coherent designs based on the observations. They have reasonably argued that probing SSDs can help build more effective solutions and bring significant performance improvement.

Based on these gains, we further ask: is there more knowledge hidden in modern SSDs, waiting to be learned and utilized, especially as modern SSDs have evolved rapidly over the past decade? We found that there are many questions unanswered in prior work. Do modern SSDs have favorable sizes on reads and punish those that do not comply (§4.1, §5.1)? Do components that were prevalent in SSDs previously, such as read buffer, still exist in recent SSD models (§4.5)? Do large-capacity SSDs, which are very common nowadays, have write buffers of appropriate sizes (§4.2) and the capability to handle highly-parallel writes (§4.4)? Do SSDs apply hybrid (externally and internally triggered) buffer flush policies (§4.3) that can be exploited for less contention and better performance (§5.2)? Do SSDs really perform better when they face less "stress" (§4.6)?
To answer those questions, we introduce Queenie, Kelpie, and Newt. (a) **Queenie** is a holistic, application-level tool that probes the SSDs with carefully tuned read/write mixed workloads. By just measuring latencies observable at the application level, Queenie learns and extracts 10 SSD internal properties and can run on any block-device SSDs. Queenie is open-sourced [3] as we are not aware of a similar tool publicly available. (b) **Kelpie** represents our analysis results of running Queenie on 21 different SSD models from 7 major SSD vendors, from regular consumer-level ones to latest enterprise-level ones. Kelpie brings numerous observations and 6 unique findings, exposing substantial improvement space for both SSD users and manufacturers. Part of Kelpie’s raw data set is made public [3]. Finally, (c) **Newt** is a set of I/O optimization examples that showcase how applications can leverage this knowledge in real-world scenarios such as aligning read sizes and exploiting write buffer knowledge.

2 GOALS

2.1 Properties and Advantages

To design Queenie, we must first decide the important SSD internal properties to learn and extract. Below, we provide the list, the definition of each of the properties, and the advantages of knowing them, as summarized in Table 1.

- **P₁ Page size** is the minimal unit of read and write. Knowing the page size is the foundation of subsequent probing techniques. **Advantage**: knowing the internal page size will help applications align I/Os properly to avoid unnecessary alignment overhead such as read-modify-write [31, 32].

- **P₂ Page type** represents the NAND cell type (SLC, MLC, TLC, etc.) and how the page offsets are mapped to low/medium/high bits of the MLC/TLC cells. A page offset that is mapped to higher bits tend to have a higher latency. **Advantage**: mapping hot data to low pages (lower latency) can bring performance improvement [16] under a typical static logical-to-physical page offset mapping at the NAND block level [50].

- **P₃ Chunk size** reveals the striping unit inside the device (similar to RAID chunk size). For example, if an SSD has 16 chips, it might spread incoming 16 pages evenly among the 16 chips (1-page chunk), or it could also split them into 2 groups to 2 chips with 8 pages each (8-page chunk). **Advantage**: this information can help applications understand the throughput of sequential reads/writes.

- **P₄ Stripe width** is the number of chunks that can be parallelized internally without contention at the chip level (akin to RAID stripe width). **Advantage**: knowing this parallelism level allows applications to exploit the internal bandwidth better, e.g., how databases are redesigned to map better to the SSD internal parallelism [12].

- **P₅ Channel/chip layout** represents the number of channels and chips per channel. **Advantage**: though sometimes treated as a “boring” fact, this property can unearth unusual findings (§6), e.g., a channel can exhibit more contention (higher latency) with some channels than with the others.

- **P₆ Read performance consistency** is about whether the SSDs have favorable read sizes and “punish” those who do not follow, e.g., whether SSDs can process non-paged, sectored reads with minimal alignment overhead and whether large reads are broken into smaller ones and served simultaneously. **Advantage**: it is worth to double check these standard expectations, as sometimes we find exceptional cases (§4.1) that might require special handling (§5.1).

- **P₇ Read buffer capacity** is about determining how much of the internal RAM or SLC is occupied for caching reads (for cost-efficiency, some newer QLC drives use SLC as the buffer instead of RAM). As NAND read speed grows faster, we check whether vendors still employ read cache inside the device. **Advantage**: caching is paramount to performance. Knowing this information can hint of a better cache design at a higher layer.

- **P₈ Write buffer capacity** is similarly about speculating how much of the internal RAM or SLC is used for buffering user writes before flushing them to the NAND cells. **Advantage**: knowing the buffer size, together with controlling/tracking user write operations, can help predict the timing of flushes and potential garbage collection activities [30].

- **P₉ Write parallelism** is the number of parallel writes supported by the device. The issue here is that unlike read operations, writes tend to be absorbed into a centralized buffer first. This probing checks whether SSDs are able to maintain high write parallelism regardless of the centralized buffering. **Advantage**: the result here can bring insights on how to apply SSD-specific optimizations for write workloads, while revealing defects in write handling in some SSDs (§4.4).

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Output Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>1</sub></td>
<td>Page size</td>
<td>Size (e.g., 4 KB)</td>
</tr>
<tr>
<td>P<sub>2</sub></td>
<td>Page type</td>
<td>S/M/TLC + low/high</td>
</tr>
<tr>
<td>P<sub>3</sub></td>
<td>Chunk size</td>
<td>Size (e.g., 64 KB)</td>
</tr>
<tr>
<td>P<sub>4</sub></td>
<td>Stripe width</td>
<td>A number (e.g., 64)</td>
</tr>
<tr>
<td>P<sub>5</sub></td>
<td>Channel/chip layout</td>
<td>#Channels * #Chips</td>
</tr>
<tr>
<td>P<sub>6</sub></td>
<td>Read perf. consistency</td>
<td>'Good'(✓) or 'Bad'(✗)</td>
</tr>
<tr>
<td>P<sub>7</sub></td>
<td>Read buffer cap</td>
<td>A size or none</td>
</tr>
<tr>
<td>P<sub>8</sub></td>
<td>Write buffer cap</td>
<td>A size or none</td>
</tr>
<tr>
<td>P<sub>9</sub></td>
<td>Write parallelism</td>
<td>A number (e.g., 4)</td>
</tr>
<tr>
<td>P<sub>10</sub></td>
<td>Internal flush window</td>
<td>A duration (e.g., 5ms)</td>
</tr>
</tbody>
</table>

Table 1: Properties covered by Queenie. The description of the 10 SSD properties and their IDs (P₁-P₁₀) covered by our work

1In the “Fantastic Beasts and Where to Find Them” movie, **Queenie** is a character who can read other people’s minds, **Kelpie** is a shape-shifting creature that can take any form, representing the many forms of our findings which depend on the probed SSD models, and **Newt** is a wizard who help solve crimes such as the crimes of Grindelwald in the second sequel.
We briefly discuss related work on SSD and storage probing, work provides more contributions in terms of SSD probing.

As mentioned, we are not aware of any other probing papers with this scale of hardware being probed.

Table 2: Queenie vs. existing work. This table compares Queenie and Kelpie (Q&K) with other related SSD probing work. ‘#’ stands for number of SSD models probed by each work. As we can see, Queenie covers more SSDs and properties.

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
<th>P10</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31]</td>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[12]</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[30]</td>
<td>7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Q&K</td>
<td>21</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 2: Queenie vs. existing work.

2.2 SSD Models

Our goal is to probe a wide variety of SSDs from different major vendors such that we can contrast the probing results from different devices. From our labs and our industry partners, we have amassed 21 SSD models from 7 vendors, from consumer-level ones (8 pieces) to enterprise-level ones (13).

The release year of these models ranges from 2008 to 2018.

Their interfaces vary: SATA (7), SAS (6) and NVMe (8). Their sizes range from 64 GB to 2 TB, covering different NAND technologies such as SLC (6), MLC (12), and TLC (3).

The full list of our devices can be found later in Table 4 in Section 6. As mentioned, we are not aware of any other probing papers with this scale of hardware being probed.

2.3 Related Work

We briefly discuss related work on SSD and storage probing, SSD performance modeling, and host-managed SSDs.

SSD probing. There are existing papers that attempt to probe SSD internals [12, 30, 31], but as shown in Table 2, our work provides more contributions in terms of SSD probing. First, Queenie and Kelpie cover more properties (P1 – P10), catching more “fantastic” facts of modern SSD models. Second, Queenie has been tested on 21 SSD models including enterprise ones, while other papers only probe up to 7 consumer models. Table 2 does not cite [28, 32] as they are shorter workshop versions. We also do not directly compare against [48] since their main focus is Intel Optane SSDs, though they also performed some probing on flash-based SSDs such as stripe width (P4) to contrast with Optane SSDs.

Storage probing. Pulling up one level higher, storage probing in general has been a common area for decades such as probing HDDs [43, 47], memory hierarchy [51], RAID [14], SMR [4], and USB drives [8]. These areas of work produce positive outcomes of better understanding the hardware internals. However, their mechanisms cannot be easily ported to SSDs given the fundamentally different physical nature.

SSD performance modeling. A different, complementary way of direct probing is black-box performance modeling [9, 15, 24, 37, 38, 44]. Prior work in this area demonstrates that modeling SSDs is feasible by just collecting external performance metrics, but some do warn that the performance models could be error-prone as they “may not necessarily apply to other SSD models” [53].

Host-managed SSDs. We acknowledge the rise of software-defined SSDs to increase controllability either via extended interfaces [27, 34, 36] or full exposure of SSD internals [6, 7, 17, 40, 52]. Probing is only useful for black-box commodity SSDs, which is our focus in this paper given the larger scale of deployment of such SSDs.

3 QUEENIE (THE “MIND READER”)

3.1 Probing Methods

Queenie probes the 10 properties (P1 – P10) as follows. We release the source code and pseudo code of Queenie [3].

Probing precondition. Properties P1 – P7 require the SSD drives to be fully erased (with secure erase) and then populated with a full sequential write (we call this a “refill” operation); For P8 – P10, drives need to be properly erased such that all writes can be sent to empty pages (i.e., no overwriting).

P1 Page size. Queenie extracts the smallest unit of read by reading continuous 0.5KB sectors to detect the interval between page boundaries. For example, assume an SSD has a page size of 4KB and page boundaries at 0, 4 and 8KB. Then a read of 2 sectors at offset 3KB would require the SSD to read only one page, while the same read at 3.5KB will read 2 pages with higher latency (if the 2 pages are parallelized inside the SSD, the latency would still be slightly higher due to channel-level contention), indicating a page boundary at 4KB. By repeating this read at larger offsets, Queenie will see the adjacent boundary at 8KB, confirming the 4KB page size. The probing function is F1_pushRead (Alg. 1 in [3]).

P2 Page type. Queenie sends page reads one page at a time and compares the read latency of each page. To eliminate the side effects of internal readahead (if any), Queenie
reads from higher to lower page offsets (readahead usually begins caching when seeing monotonically increasing back-to-back offsets). For M/TCX drives, we will observe different latencies as the offsets vary, as pages are mapped to different lower/medium/higher bits of the cell. With this, Queenie can retrieve the LPN (logical page number) positions of low/medium/high pages. This page-wise layout can be further divided by the stripe width (P_4) to get the layout inside a flash chip, assuming pages are evenly distributed to all chips. The function is F_2 (Alg. 2 in [3]).

P_3 Chunk size. Queenie reuses F_1 (pushRead) to detect chunk boundaries by reading consecutive pages. With an SSD of a 16-page chunk size and chunk boundaries at 0, 16, and 32 pages, a 2-page read at page 14 will go to only one chip, while reading at page 15 would be served by two chips in parallel with lower latency, indicating a boundary at page 16. Similarly, at larger page offsets, Queenie will see another boundary at page 32 and infer a chunk size of 16 pages.

P_4 Stripe width. Queenie issues concurrent chunk reads with incremental offsets. For instance, for an SSD with a stripe width of 16 chunks, issuing 4 reads with an offset increment of exactly the stripe width would cause these 4 reads to be sent to the same chip, resulting in heavier contention than those with smaller offset increments. The function is F_3 (Alg. 3 in [3]).

P_5 Channel/chip layout. F_3 (strideRead) also helps reveal channel-level contention when reads are sent to the same channel but to different chips, with a specific offset increment smaller than the stripe width. Such an offset increment hints the number of channels.

P_6 Read performance consistency. Queenie issues random reads of increasing sizes with sector-level increments, checks whether larger reads experience higher average latencies than smaller ones, and then identifies "problematic" size ranges. The function is F_4 (Alg. 4 in [3]).

P_7 Read buffer capacity. Queenie issues a large read first and then re-reads the very first page of the previous large read. If the device has a read buffer large enough to contain the large read, then the re-read latency should be much lower than that of a regular page read because it is buffered. The function is F_5 (Alg. 5 in [3]).

P_8 Write buffer capacity. Queenie issues concurrent non-overlapping writes. When the read buffer is flushed (near full), it will cause a write-latency spike. The amount of data written between the latency spikes hints the capacity of the write buffer. The function is F_6 (Alg. 6 in [3]).

P_9 Write parallelism. While running F_6, the distribution of write latencies reflects the number of writes that can be supported at once. As a simple example, if 4 of 8 concurrent writes (issued at the exact same time, µs-level) observe almost a 2x latency compared to the other 4 exactly concurrent writes, then we can conclude the write buffer can absorb 4 concurrent writes at a time (not per second).

P_{10} Internal flush window. After identifying the write buffer capacity, function F_7 (sequSleep) (also Alg. 6 in [3]) slowly populates the entire write buffer by injecting sleep (2ms to 5s in a "binary search" manner) to determine the minimal sleep length that eliminates the flush spikes completely. This minimal length represents the internal flush window.

3.2 Probing Time and Automated Analysis

To ensure that our conjectures are highly consistent, for every measurement, we repeat the I/Os for 5,000–10,000 times and use the average, requiring 1-8 hours for each probing experiment to finish (for all SSD drives in our collection). For read-only properties P_1–P_7, the drive only needs to be "refilled" once at the beginning of the probing to minimize error times and prevent the drive from wearing out [21, 25].

We also developed a tool that automatically analyzes the outputs of these probing functions and generates a final result for the properties. The key to the automated analysis is identifying latency abnormalities. For example, in probing write buffer latency (P_8), latency spikes are considered an indication of buffer occurrences since their latencies are much higher than the others; in probing stripe width (P_4), latency will be significantly higher if those concurrent reads are sent to the same flash chip.

The tool uses the Jenks natural breaks algorithm [45], a classification method optimized for one-dimensional data (the latencies) to distinguish abnormal from normal latencies. We configure Jenks to output two classes and take the one with fewer data points as the abnormalities. Then, the most common interval between neighboring abnormalities is calculated to represent the probed property. For instance, the interval between two neighboring spikes in P_8 (see Figure 2 later) is the amount of data needed to trigger a buffer flush, indicating the buffer capacity.

For properties where different levels of abnormalities might exist, specifying more than two classes might give more accurate results (e.g., in P_4 stripe width, latency spikes could be lower when only half of the concurrent reads go to the same chip). For such properties, we run Jenks several times from two to five classes and use Silhouette score (range from 0 to 1) to select the best classification result for generating the final probing results (Table 3). In other words, the Silhouette score is considered the confidence score for the analysis results generated from a certain number of classes.

Table 3: Automated analysis example output for page size (P_1)

<table>
<thead>
<tr>
<th>Confidence</th>
<th>4 KB</th>
<th>1 KB</th>
<th>8 KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>0.70</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>
4 KELPIE (MANY “FORMS OF FINDINGS”)

While later Section 6 shows all the findings, here we highlight 6 main ones that we consider both “interesting” and “unique.” Each subsection starts with a summary of the finding.

Labeling: These SSD models (symbols) are composed of three parts: protocol (NVMe, SATA, SAS), size (e.g., 100G, 1T), and vendor code (a letter between A..Z). For the last item, a character represents a vendor, but the letter-to-vendor mapping is not revealed for hiding the actual vendor names. For example, “N1T1” is a 1 TB NVMe drive from vendor I, “T480G” is a 480 GB SATA drive from vendor S, and “A800GP” is a 800 GB SAS drive from vendor P.

4.1 Read Sizes vs. Performance

Observation: Enterprise-level drives, N1T1, N2T1, and N1,T6T,W, show higher latencies (50-400µs or up to 3x higher than the average) when the read size (a) is not a multiple of the page size or (b) lies within certain size ranges.

SSDs have a minimal unit of read/write (“page”). Making an I/O size multiple of the page size will avoid paying the alignment overhead [31]. Modern SSDs are mostly well-optimized to minimize this overhead to single-digit µs. However, this is not always the case even for the latest drives. One recent enterprise-level SSD, N1T1, exhibits worse latencies when the read size does not fit its expectation.

Figure 1a shows that N1T1 returns up to 400µs or 3x higher latency (y-axis) when the read sizes (x-axis) are not multiple of 4KB. To emphasize, the read offsets are page-aligned but not the sizes, and the offsets are random. With this, N1T1 would have a downgraded performance under real industrial SSD traces, including a database workload where 65% of the reads are not multiples of 4KBs (§5.1).

Another interesting anomaly is latency spikes within certain size ranges. Figure 1b shows that drive N2T1 responds with 50µs higher latency (20-30% higher) when the read sizes fall within certain size ranges (17-20KB, 33-36KB, and 49-52KB). With this knowledge, by just increasing the read size slightly to fall outside these ranges (e.g., change a 20KB read to a 24KB read), one can gain a substantial improvement (§5.1). Figure 1c shows a similar anomaly in drive N1,6T,W with a 2-3x latency (350-600µs) when read sizes fall within the 20-260KB range but nowhere else up to 1 MB (the maximum read size in our experiment).

4.2 Small Write Buffer

Observation: 13 SSDs (mostly enterprise-level) have a relatively small write buffer (≤ 64MB), while some older SSDs can employ a large buffer as high as 800MB.

Surprisingly, most SSDs only employ a write buffer of tens of MBs. Figure 2a hints that N2T1, a 2TB enterprise-level drive, only uses 11.5MB for the write buffer; every 11.5MB of write traffic results in a latency spike of up to 1.5ms, which reflects the NAND programming time. Assuming the SSD is handling a reasonable write workload of 100 MB/s, the user would see roughly ten occurrences of a latency spike. Similarly, Figure 2b shows that another 1TB drive, N1T1, can employ a “partial” write buffer of only 3MB (see §6).
Another interesting observation is that write buffers on some drives are not capped by MBs but rather the number of write I/Os, e.g., in Figure 2c, $A_{200G}C$ issues a flush for every 1280 writes regardless of whether the size is 4/8/16/32/64KB. We also observed that 5 models employ a two-level buffer (i.e., RAM as the first level and SLC as the second [11, 22]). In $T_{200G}S$ drive in Figure 2d, we see a spike of almost 1ms every 2MB of write and another 7ms spike every 256MB of write, while the latency of buffered writes is only 90µs.

4.3 Idle-Time Buffer Flush

Observation: For 14 out of the 21 SSDs in our collection, internal buffer flush is triggered during idle time, which can be exploited by making the host send sparse/delayed writes.

Internal buffer flush can be triggered during highly intensive writes (Figure 3a), which will cause a write backlog, or during idle time (Figure 3b), which can be exploited to reduce write delays by having the higher storage layers send sparse/delayed writes.

Figure 3c shows this opportunity. Here, we use $T_{200G}M$ (known to have a 64 MB write buffer) and send batches of writes, where a batch is 64MB. In between the write batches, we insert an increasing user-level sleep time that ranges between 0 to 0.75s. Without an idle window (x=64MB), the figure shows a high latency spike around the boundary of the 1st and 2nd write batches, as expected. However, as we increase the user sleep time between the subsequent batches, we see a reduced backlog. For example, as we insert 0.75s idle time between the 4th and 5th batch (x=256MB), the internal write buffer is likely being flushed, and the user writes can be absorbed by the buffer, resulting in low latencies.

Figure 4: “Serialized” concurrent writes (§4.4).

(a) An expected behavior of write parallelism with 4 concurrent completions at a time, and (b) an anomalous behavior of write parallelism where the concurrent I/Os of the same batch are serialized when the write batch starts with an empty device queue.

Outcomes from the other 13 drives also show this prevalent design choice. For example, $N_{0.67}S$ can empty its buffer (40.25MB) in a idle window of 50ms and $T_{480G}S$ is capable of doing the same for its second-level buffer (256MB) in 5s (more details in §6).

4.4 “Serialized” Concurrent Writes

Observation: 4 out of 21 drives, $A_{960G}P_{T_1}$, $A_{960G}P_{S_1}$, $A_{1.6T}P_1$, and $N_{0.67}W$, exhibit an anomalous concurrent write behavior where the concurrent I/Os in a given batch are serialized when the device queue is empty of pending writes.

Regarding property P_5 (write parallelism), one of Queenie’s functions sends continuous concurrent 32KB writes, say $w_1...w_z$ where 1 and z represent the first and last write of this long-running experiment, respectively. For device $A_{960G}P_2$, Figure 4a shows that this device returns 4 write completions at a time, i.e., a write parallelism (P_5) of 4.

However, we notice a consistent anomalous behavior in the beginning of the experiment, which prompts us to configure Queenie to run batches of concurrent writes and pause in between until the device queue has no outstanding writes. Figure 4b shows this anomalous behavior of “serialized” concurrent writes. Whenever concurrent writes are sent when the device queue is empty, we notice that the first write (w_1) completes first after 80µs and the other concurrent writes (w_2-w_4) of the same batch complete after 210µs. In other words, if users send periodic concurrent writes, these writes will be serialized as illustrated in Figure 4b.

4.5 The Disappearing Read Cache

Observation: Only 1 SSD model, $A_{800G}P$, employs an internal read cache. Disappearing read cache is likely due to the increasing NAND speed and DRAM buffer in higher layers.

An internal read cache, which was an essential part of SSD years ago [31], is hardly seen in modern SSDs. As recent NVMe drives deliver low read latency (30-150µs), using internal RAM for data caching might be deemed unnecessary.
4.6 Less Load but Higher Latency

Observation: In \(N_{2T}I\), fewer concurrent reads surprisingly lead to higher latency: some drives may prioritize throughput.

Usually, less concurrency/load results in lower latencies. However, we observe the opposite behavior in drive \(N_{2T}I\). In Figure 5, we perform five additional experiments, each with a different level of concurrency \(C\) from 1 to 16. Each experiment sends \(C\) concurrent random page reads (as a batch), waits until the completion of the batch, and then sends another batch of \(C\) concurrent reads. This loop repeats for thousands of times. The y-axis shows the average latency of the \(i^{th}\) returned I/O within every batch.

Let us start with the single ■ point, which indicates that there is only one I/O (1\(^{st}\)) in the batches of "1-concurrent" I/O, and the average latency is 82\(\mu\)s. However, in the 16-concurrent I/Os experiment (the blue ○ line), we see that the average latency of the 1\(^{st}\) I/O (x=1) and the 4\(^{th}\) one (x=4) is only 59 and 72\(\mu\)s, respectively, significantly lower than the ■’s 82\(\mu\)s value. Put simply, less-loaded experiments (less concurrency) result in higher latencies than the more-loaded ones. The root cause of this phenomenon remains a mystery. Perhaps this drive is optimized for throughput.

5 NEWT (A “CRIME SOLVER”)

This section illustrates the benefits of Queenie and Kelpie for storage designs and policies, that is, how storage architects or users can leverage the extracted information to improve storage performance. Please note that the case studies in this section are just initial proofs of concept. We believe that subsequent studies can use the probed information extensively. Below, we use real industrial block-level SSD traces that represent a large company’s database (DB), search engine (SearchEng), and cloud storage (CloudStore) workloads.

5.1 Read Size Alignment

Section §4.1 shows that some data-center SSDs interestingly exhibit higher latencies when the read sizes fall into certain ranges. In Figure 1, \(N_{1T}I\) delivers higher latencies when read sizes are not multiples of 4KB, \(N_{2T}I\) has inexplicable 4KB-size ranges (e.g., 17-20, 33-36, and 49-52KB sizes) that will result in higher latencies, and \(N_{1,6T}W\)’s speed drops when read sizes are in between 20-260KB.

Conceivably, such behaviors are ill-suited for real user workloads. For example, in the industrial traces we use, specifically the database traces, around 65% of the read sizes are not multiples of 4KB but rather multiples of 512 bytes. The latency-increasing size range on \(N_{1,6T}W\) (20-260KB) will also be an issue since even page-aligned I/O sizes can easily fall within this problematic range (e.g., 24KB).

A straightforward rearrangement that higher storage layers can employ to mitigate this issue is to avoid those problematic size ranges by adjusting the read sizes. For example, for \(N_{1T}I\), the OS can increase the read size to the next page-size boundary (e.g., change a 7KB read to 8KB). Figures 6a-b show that this very simple approach can speed up two database workloads (DB\(_A\) and DB\(_B\)), specifically, 14-31% read latency improvement at the 90\(^{th}\) percentile, and 18-32% and 13-48% at the 95\(^{th}\) and 99\(^{th}\) percentiles, respectively.

For the read-size oddities in \(N_{2T}I\), the OS can increase the read size outside its problematic size ranges (e.g., change a 20KB read to 24KB). We use a search engine trace with mostly page-aligned I/Os but now make sure the peculiar ranges are avoided. Figure 6c shows that the latency is improved by...
14–20% between the 90–99th percentiles. Other than these, open questions remain on what to do with $N_{1.0T}$ where the under-performing size range is up to 260KB. The root cause could be factors like buggy firmware that seem more appropriate for the manufacturer to fix.

The main side-effect of read alignment is that it incurs more load on the SSD. However, as shown in Figures 1 and 6, reading more data in aligned requests is better than reading less unaligned data, especially for drives like N_{T} that has significant overheads with unaligned reads. Other side-effects include cache pollution, read disturbance, etc.

5.2 Exploiting Write Buffer Knowledge

When the internal write buffer is full, an expensive flush is triggered, causing write latency spikes (§4.3). What we did not show is that such an expensive flush also causes a ripple effect to read latencies for two reasons. First, large flushes send more writes to the NAND cells and make incoming NAND reads wait behind the longer writes due to the length of the cell programming time. Second, flushing large amounts of data will likely trigger concurrent GCs across many chips, generating more read-write and erase contention compared to periodically flushing smaller amounts of data.

This begs the question: is there a way to mitigate the negative impact of full-buffer flush? This is where the knowledge about the internal write buffering becomes valuable (P_{S} write buffer size and P_{10} flush window). This gray-box information can be effectively used by the higher storage layers to rate-limit the incoming writes accordingly to gain performance but without delaying writes significantly, specifically, by avoiding a full-buffer flush and allowing the underlying SSDs to flush gradually at the rate of its internal flush speed.

To demonstrate the potential improvement, we design a 4-step algorithm that can be deployed as a block-level rate-limiting shim layer. (1) We use Queenie to identify the write buffer capacity and the internal flush window and then divide these two values to get the average “flush speed,” e.g., in N_{2T}, we identified a 11.5MB buffer with 200ms flush window, implying a flush speed of 57.5 MB/s (11.5MB/200ms). (2) The shim layer monitors the incoming write intensity in a recent time period of configurable length, e.g., 5 MB write data in a monitored period of 100ms implies a 50 MB/s intensity. (3) We then introduce the “flush urgency” by dividing this incoming write intensity by the flush speed, indicating how intensive are the incoming writes with respect to the internal digest speed. In this example, the flush urgency is 0.87 (50/57.5). (4) If the shim layer observes an urgency less than 0.5, then it will allow all the incoming writes within the current 100ms period to enter the SSD. Otherwise, the incoming writes must be slightly delayed by T ms (e.g., 0.1-1ms). The value of T is calculated by a rate-limiting function that incorporates the proportion of the recent read/write intensity and the flush urgency.

To evaluate this mechanism, we run the SearchEng and CloudStore traces on N_{2T} and T_{200G}, respectively. Figures 7a-b show our shim layer results in a dramatic shift from the original latency CDF of the same experiments (New-vs-Original lines).

![Figure 7: Exploiting write buffer knowledge (§5.2). The top figures show the read latencies (y-axis) across time (x-axis). With our rate-limiting shim layer the high latency spikes (red dots) now disappear (blue dots). The bottom figures show the corresponding read latency CDF of the same experiments (New-vs-Original lines).](image)

![Figure 8: On-hold data in the rate-limiting layer (§5.2). A reasonable amount of writes (y-axis) on-hold across time (x-axis).](image)
The main limitation of the shim layer is that rate-limiting can only be applied to writes not called under application-level sync() since delaying writes can reduce data durability enforced by such explicit sync. More exploration on the design space including requirements for data persistence and durability is open for future work.

5.3 Other Properties

Kelpie reveals many important SSD performance characteristics, but we acknowledge that some of them may be hard to leverage outside the FTL. For example, properties P_1-P_3 could be leveraged to “pinpoint” user data onto low/high pages (i.e., a sequential write workload issued to a freshly erased drive would be striped into chunks and be spread onto flash chips with certain page layouts as probed by P_2), but would be extremely difficult to keep track of the mapping once GC kicks in. Findings in §4.6 hinted that heavier load can even reduce single I/O latency on N_{2TI} (Figure 5). To leverage this, single user reads can be batched with dummy reads to improve latency, but such a radical scheme requires precise I/O control, might introduce non-trivial side-effects, and may not be generally applicable. Property P_3 and findings in §4.4 reveal that for some drives, writes can be serialized when the device queue is empty, which seems a problem more appropriate for the manufacturers to fix than an opportunity for the users to leverage. We hope that our work can spur more future exploration.

6 KELPIE (ALL FINDINGS)

This last section describes all of our findings. Kelpie’s raw data set is 10 GB in size, which contains all results and graphs of running Queenie on the 21 SSD models. We release part of this data set that we can [3]. We now discuss each of the properties probed. Table 4.X denotes column X of Table 4.

P_1 Page size. 4KB is a general standard that applies to all non-SLC drives (except A_{800G}). In contrast, SLC drives (except T_{200G}) mostly use a larger page size such as 8 or 16KB. Also, in general, recent drives tend to employ a 4KB page size. We also observed some models (e.g., N_{16T}, N_{128G}, and A_{600G}) having a dual-plane structure where two parallel pages are mapped to two adjacent planes of the same chip, hence can be simultaneously accessed in parallel. Here, we keep the original page size but recommend to test the two pages as a whole entity for further probing.

P_2 Page type. We categorize the SSDs into 3 classifications: SLC (with low pages only), MLC (low and high), and TLC (low, medium, and high). Low/medium/high means that the page is mapped to low/medium/high bits of the MLC/TLC cells. Based on the latencies observed, we also speculate the page-to-cell mapping pattern. For example, “4L 4H” means that the first four pages of each NAND chip are mapped to low pages and the next four to high pages (hence higher latency), and this pattern repeats in subsequent pages. Table 4.P2 shows that MLC is the most popular type in our set. For MLC models, we further find three patterns of page-to-cell mappings: 1L 1H, 4L 2H, and 4L 4H, which are more orderly patterns than non-commodity SSDs such as OpenChannel SSDs that exhibit a complex pattern of 6L 1H 2L 1H 2L 2H...1H 2L 1H [1] (where “...” repeats the 2L 2H pattern), as probed by a prior work [18, 4.3]. For TLC drives (N_{2TI}, N_{1TI}, and A_{6T}), the page layout of L/H/H patterns are too long to be put in the table. These drives employ a complex “composite” mapping, e.g., on N_{2TI}, the entire 0-128KB range is mapped to L pages, while the 128KB-256KB range follows an 2W 2H pattern. Finally, SLC is only seen in the small-capacity, older non-NVMe SSDs ($< 200 GB$).

P_3 Chunk size. For this property, Table 4.P3 uses KB (instead of pages) as the unit of chunk size. For example, N_{2TI}’s 64KB chunk size implies that the drive maps 16 consecutive 4KB pages into a chunk. Our findings show that all SLC drives use one-page chunks. For non-SLC ones, every vendor has its own configuration. For example, vendor S uses one-page chunks, vendor P configures 4-page chunks, and vendor I organizes large chunks of 16-64 pages. Here, the chunk size can also reflect the difference in FTL mapping granularity, e.g., drives with one-page chunks are more likely to use a page-level FTL mapping. As a small note, T_{64G}’s chunk size is marked with a “-” as the drive has only 1 chip.

P_4 Stripe width. As expected, SSDs with larger capacity tend to have larger stripe widths of up to 128-256 of parallel chunks (chips or planes) within a stripe, showing a massive parallelism for absorbing intensive workloads. In contrast, smaller drives usually have a stripe width of ≤64 (except T_{200G} and A_{200G}). Another note is that many numbers in Table 4.P4 are not in the power of 2, including $N_{1,6T}$ (124), N_{2TI} (186), $N_{1,6T}$ (122), T_{64G} (20), A_{6T} (247), A_{600G} (200), N_{6W} (124), A_{800G} (30), and A_{800G} (235). This may indicate a couple of design choices such as parity spaces in RAID [42, 50] or reserved/back-up chips that are not observable externally. Finally, for TLC drives N_{1TI}, we cannot conclusively determine the stripe width due to its complex composite mapping (“?” in Table 4).

P_5 Channel/chip layout. We found that larger drives prefer a “wide” setting – more channels but fewer chips per channel. For example, $N_{1,6T}$ has a 16x8 (#channels × #chips/channel) layout which is efficient for channel parallelization but at the same time reduces the multi-chip bandwidth contention on each channel, and A_{600G} employs a 32×2 one. For smaller drives, the setting can vary. There is a

2 Models with 4L 2H actually have a “3 bit” structure (e.g., the 3D NAND technology). Kelpie’s results show that, however, two of the bits exhibit very similar latency levels and thus we treat both bits as low pages.
Table 4: All findings in Kelpie (§6). Every P column is described in the corresponding subsection of §6. In the first column, SSD models are denoted with the protocol (NVMe, SAS, or SAT_A), size in GB, and the vendor code (§, I, W, M, P, G, and H). For example, “N1.6T” is a 1.6TB NVMe drive from vendor S. We do not reveal the full names of the vendors. Other notes: In some columns, for brevity we omit “B” (bytes), hence “K/M” means “KB/MB.” “—” means not applicable. “?” implies unsuccessful probing. For other specific labels in every column (such as ✓, X, p, NB, P, †, ‡, §), please consult the corresponding subsection in §6.

"wide" setting similar as above (the 128GB N1.28G with 16×2) and a "deep" setting (the 500GB N500G with 4×16); the deep setting is prone to many-chip bandwidth contention on every channel. We also see two drives with non-power-of-2 #channels: T64G (10×2) and A960G PT (20×10). For N1.17I, the layout is labeled "?” in Table 4 due to the same reason – the composite mapping issue. We found an interesting anomaly in drive N1.6T where the I/Os to separate channels seem to be contending with one another. Upon further investigation, we revealed a channel "grouping," where the 16 channels on N1.6T are evenly divided into 4 pools, and I/Os to the same pool will contend with one another (with an overhead of 10µs) even if the I/Os target different channels in the pool. This contradicts the traditional view of channel parallelism. The root cause remains unknown.

P6 Read performance consistency. As discussed in Section 4.1.3 enterprise-level SSDs (N2TI, N1TI, and N1.6T) exhibit degraded performance under certain read sizes (labeled as X in Table 4.P6). It could be a fact that applications must live with or a bug/defect inside the SSD. With the former, OS/applications can take remedies such as altering the read sizes (§5.1), but this requires a preliminary probing cost to determine whether the SSDs have this problem. If this is a bug/defect, then SSD vendors might want to adopt this kind of test from Queenie to their device quality tests.

P7 Read buffer capacity: Our results show that read buffers are becoming extinct in modern SSDs (almost all “—” in Table 4.P7), with the exception of one SAS drive A400G which has a 16MB read buffer. This phenomenon can be attributed to the increasing speed of NAND and the larger DRAM caches in higher storage layers that make internal read cache obsolete. However, for SATA/SAS drives with higher read latencies (e.g., hundreds of µs), a read buffer can still be beneficial (see §4.5).

P8 Write buffer capacity. (a) The first trend observed is that write buffering is still prevalent but now drives only provision a small buffer. TB-scale drives (e.g., N1.6T, N2TI, N1.6T, N1TI, and N1.6T) use only a ≤4MB buffer, perhaps for lower cost and because a small buffer forces frequent small flushes, more favorable than large flushes that can cause long blocking (§4.2 and §5.2) and trigger large GCs. (b) Another trend we see is 2-level buffering (§4.2), found in 5 drives labeled with a pair of first and second level sizes in Table 4.P8. For example, A800G P’s “2M|512M” implies a two-level buffer with 2MB and 512MB for the first and second levels, respectively. In one drive, A200G CH, the second-level write has two policies (marked with † in the table): flush either after a threshold of 126.5MB or 1280 I/Os of writes has been exceeded, where an "I/O" can be of any size. (c) We found that 4 drives (N1.6T, N1TI, T64G I, and A960G PT)
can choose to flush their buffers partially even when they are not idle. For example, under sequential writes, we see \(N_{1.6T}S \) constantly flushes 5.75MB of data out of its 40.25MB full buffer capacity, \(N_{1T} \) 3MB out of 11MB, \(T_{64G} \) 4MB out of 10MB, and \(A_{960G} \) 7.5MB out of 11.5MB, labeled with "p" in Table 4.\(P_8 \). For SSDs, periodic partial flushes are a double-edged sword: on the one hand they tone down the blocking impact, on the other hand they can increase write amplification (e.g., new overwrites to the same LPNs just recently flushed). (d) Finally, we observed 3 drives (A\(_{1.6T}P\), A\(_{960G}P\), and \(N_{1.6T} \)) that rarely show write latency spikes even with a full write bandwidth experiment. Our assumption is that these drives perform partial flushes and are able to optimize them without blocking incoming I/Os. In such an optimized design, we cannot conclusively probe their write buffer capacities and mark them with "NB + P" (non-blocking and partial) in Table 4.\(P_8 \).

\(P_9 \) Write parallelism. Although many SSDs have a high stripe width (\(P_9 \)) to support high read parallelism, this is not the case for write parallelism. For example, \(N_{1.6T}S \), an enterprise-level drive that is able to handle 124 concurrent chunk reads, can only allow 8 concurrent writes. Indeed, 8 concurrent writes is the highest write parallelism that we observe, while others only reach 2 or 4 as shown in Table 4.\(P_9 \). However, we caution that read and write parallelism are not directly comparable, mainly because read I/Os fetch data from the NAND (with the absence of internal read cache) while write I/Os are absorbed by the internal RAM. As presented earlier in Section 4.4, we found anomalies where 4 drives (A\(_{960G}P\), A\(_{960G}P\), A\(_{1.6T}P\), and \(N_{1.6T} \)) exhibit “serialized” concurrent writes when the I/Os are inserted to the device queue without any pending writes. These anomalies are labeled with “X” in Table 4.\(P_9 \).

\(P_{10} \) Internal flush window. (a) Section 5.2 successfully demonstrates that probing the internal flush speed can be useful for rate-limiting optimizations. Flush speed is a function of buffer size (\(P_{10} \)) divided by the “flush window” (\(P_{10} \)). In earlier experiments in Figure 3 of Section 4.3, the flush window is essentially equal to how much time the OS/user should let the device remain idle to prevent write latency spikes. This window value is shown in Table 4.\(P_{10} \) (e.g., mostly around 2 to 300ms). (b) The infinite label in Table 4.\(P_{10} \) indicates the worst-case scenario. For 5 devices (\(N_{1.6T}M\), A\(_{800G}P\), A\(_{280G}H\), T\(_{64G}S\), and T\(_{64G}I\)), some writes will experience latency spikes regardless of the length of the idle period. This basically implies that the write flush is never triggered unless the space threshold (e.g., 90% full) has been reached. (c) We also found that SSDs from the same vendor have different strategies. \(N_{1T} \), \(N_{1.6T} \), and \(N_{2T} \) are three TB-scale drives from the same vendor \(I \) with similar buffer sizes but use dramatically different amount of times to clean their buffers; \(N_{2T} \) does so lazily within a 200ms idle window, \(N_{1.6T} \) requires only 10ms, while \(N_{1T} \) is very aggressive and flushes within 3ms. (d) For drives with two-level buffering, likewise, we use a pair of first and second level time windows, which shows that the drives apply different window policies for the two levels. For example, T\(_{480G}S\)’s “10ms | 5s” window value implies that it aggressively flushes the first level buffer in 10ms but only empties the second level buffer lazily in 5s. (e) Finally, “—” in Table 4.\(P_{10} \) highlights that the corresponding devices (\(N_{1.6T} \), A\(_{960G}P\), and A\(_{1.6T}P\)) perform the optimized non-blocking, partial flushes discussed above. Here, we cannot probe the flush window value.

7 VALIDATION AND CONCLUSION

To validate the probing methods and the analysis results, one direct approach is via confirmation from the SSD vendors. We contacted three major vendors: two were unwilling to cooperate due to the sensitive proprietary nature of these black-box SSDs; one vendor was willing to help, but with strict limitations that make the process extremely slow. We were given only one chance to verify with a simple “right/wrong” feedback with no room for further discussion (because again it is sensitive information). This makes troubleshooting hard: a “wrong” answer could be due to misunderstanding of the properties (i.e., the vendor may have different names and interpretations of these properties) or inaccurate probing methods. After six months, we have only verified one property for three of the SSDs, due to these communication limitations.

Because this method is not scalable, we pursued a different method: we used our (old) open-channel SSD [1] and were able to verify \(P_1 \), \(P_3 \), and \(P_4 \) before it became erratic. We recently moved to SSD emulators such as FEMU [35] and were able to verify \(P_8 \) at the time of writing.

Overall, our findings should be treated as empirically-driven, user-observed conjectures, as the real truth is only known to the vendors. Nevertheless, we believe this paper makes strong contributions: a comprehensive set of SSD probing techniques that learn black-box information, many interesting forms of deep findings, and case studies that show how the I/O stack can use the learned knowledge.

ACKNOWLEDGMENTS

We thank Gala Yadgar, our shepherd, and the anonymous reviewers for their tremendous feedback and comments. We also thank Anirudh Badam and Abhijeet Gole for their helpful discussions and comments on this paper. This material was supported by funding from NSF (grant Nos. CNS-1526304, CNS-1405959, CCF-2028427, and CCF-2119184) as well as generous donations from Facebook Faculty Research Award, Google Faculty Research Award, NetApp Faculty Fellowship, and CERES Center for Unstoppable Computing.
REFERENCES

