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Abstract

We conduct a comprehensive study of development and de-

ployment issues of six popular and important cloud systems

(Hadoop MapReduce, HDFS, HBase, Cassandra, ZooKeeper

and Flume). From the bug repositories, we review in total

21,399 submitted issues within a three-year period (2011-

2014). Among these issues, we perform a deep analysis of

3655 “vital” issues (i.e., real issues affecting deployments)

with a set of detailed classifications. We name the product of

our one-year study Cloud Bug Study database (CBSDB) [9],

with which we derive numerous interesting insights unique to

cloud systems. To the best of our knowledge, our work is the

largest bug study for cloud systems to date.

1 Introduction

1.1 Motivation

As the cloud computing era becomes more mature, vari-

ous scalable distributed systems such as scale-out computing

frameworks [18, 40], distributed key-value stores [14, 19],

scalable file systems [23, 41], synchronization services [13],

and cluster management services [31, 48] have become

a dominant part of software infrastructure running behind

cloud data centers. These “cloud systems” are in constant

and rapid developments and many new cloud system archi-
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tectures have emerged every year in the last decade. Unlike

single-server systems, cloud systems are considerably more

complex as they must deal with a wide range of distributed

components, hardware failures, users, and deployment sce-

narios. It is not a surprise that cloud systems periodically ex-

perience downtimes [7]. There is much room for improving

cloud systems dependability.

This paper was started with a simple question: why are

cloud systems not 100% dependable? In our attempt to pro-

vide an intelligent answer, the question has led us to many

more intricate questions. Why is it hard to develop a fully

reliable cloud systems? What bugs “live” in cloud systems?

How should we properly classify bugs in cloud systems? Are

there new classes of bugs unique to cloud systems? What

types of bugs can only be found in deployment? Why existing

tools (unit tests, model checkers, etc.) cannot capture those

bugs prior to deployment? And finally, how should cloud de-

pendability tools evolve in the near future?

To address all the important questions above, cloud out-

age articles from headline news are far from sufficient

in providing the necessary details. Fortunately, as open

source movements grow immensely, many cloud systems

are open sourced, and most importantly they come with

publicly-accessible issue repositories that contain bug re-

ports, patches, and deep discussions among the developers.

This provides an “oasis” of insights that helps us address our

questions above.

1.2 Cloud Bug Study

This paper presents our one-year study of development

and deployment issues of six popular and important cloud

systems: Hadoop MapReduce [3], Hadoop File System

(HDFS) [6], HBase [4], Cassandra [1], ZooKeeper [5], and

Flume [2]. Collectively, our target systems represent a di-

verse range of cloud architectures.

We select issues submitted over a period of three years

(1/1/2011-1/1/2014) for a total of 21,399 issues across our

target systems. We review each issue to filter “vital” issues
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from “miscellaneous” ones. The former represents real issues

affecting deployed systems while the latter involves non-vital

issues related to maintenance, code refactoring, unit tests,

documentation, etc.. In this paper, we only present findings

from vital issues. In total, there are 3655 vital issues that we

carefully study.

For each vital issue, we analyze the patches and all the de-

veloper responses for the issue. We then categorize vital is-

sues with several classifications. First, we categorize them by

aspect such as reliability, performance, availability, security,

data consistency, scalability, topology and QoS. Second, we

introduce hardware type and failure mode labels for issues

that involve hardware failures. All types of hardware, disks,

network, memory and processors, can fail and they can fail in

different ways (stop, corrupt, or “limp”). Next, we dissect vi-

tal issues by a wide range of software bug types such as error

handling, optimization, configuration, data race, hang, space,

load and logic bugs. Fourth, we also study the issues by im-

plication such as failed operations, performance problems,

component downtimes, data loss, staleness, and corruption.

In addition to all of these, we also add bug scope labels to

measure bug impacts (a single machine, multiple machines,

or the whole cluster).

The product of our classifications is Cloud Bug Study

DB (CBSDB), a set of classification text files, data mining

scripts, and graph utilities [9]. In total, we have added 25,309

annotations for vital issues in CBSDB. The combination of

cloud bug repositories and CBSDB enables us (and future

CBSDB users) to perform in-depth quantitative and qualita-

tive analysis of cloud issues.

1.3 Findings

From our extensive study, we derive the following important

findings that provide interesting insights into cloud systems

development and deployment.

• “New bugs on the block”: When broken down by issue as-

pects (§3), classical aspects such as reliability (45%), perfor-

mance (22%), and availability (16%) are the dominant cat-

egories. In addition to this, we find “new” classes of bugs

unique to cloud systems: data consistency (5%), scalability

(2%), and topology (1%) bugs. Cloud dependability tools

should evolve to capture these new problems.

• “Killer bugs”: From studying large-scale issues, we find

what we call as “killer bugs” (i.e., bugs that simultaneously

affect multiple nodes or the entire cluster). Their existence

(139 issues in our study) implies that cascades of failures

happen in subtle ways and the no single point of failure prin-

ciple is not always upheld (§4).

• Hardware can fail, but handling is not easy: “Hardware

can fail, and reliability should come from the software” is

preached extensively within the cloud community, but we

still find 13% of the issues are caused by hardware failures.

The complexity comes from various causes: hardware can

fail in different ways (stop, corrupt, or “limp”), hardware can

fail at any time (e.g., during a complex operation), and re-

covery itself can see another failure. Dealing with hardware

failures at the software level remains a challenge (§5).

• Vexing software bugs: Cloud systems face a variety of

software bugs: logic-specific (29%), error handling (18%),

optimization (15%), configuration (14%), data race (12%),

hang (4%), space (4%) and load (4%) issues. Exacerbating

the problem is the fact that each bug type can lead to al-

most all kinds of implication such as failed operations, per-

formance degradation, component downtimes, data loss, stal-

eness, and corruption (§6).

• Availability first, correctness second: From our study,

we make a conclusion that cloud systems favor availability

over correctness (e.g., reliability, data consistency). For ex-

ample, we find cases where data inconsistencies, corruptions,

or low-level failures are detected, but ignored so that the sys-

tem can continue running. Although this could be dangerous

because the future ramifications are unknown, perhaps run-

ning with incorrectness “looks better” than downtimes; users

often review systems based on clear performance and avail-

ability metrics (e.g., throughput, 99.9% availability) but not

on undefined metrics (e.g., hard-to-quantify correctness).

• The need for multi-dimensional dependability tools: As

each kind of bugs can lead to many implications and vice

versa (§5, §6), bug-finding tools should not be one dimen-

sional. For example, a tool that captures error-handling mis-

takes based on failed operations is an incomplete tool; error-

handling bugs can cause all kinds of implications (§6.1).

Likewise, if a system attempts to ensure full dependability

on just one axis (e.g., no data loss), the system must deploy

all bug-finding tools that can catch all hardware and soft-

ware problems (§7). Furthermore, we find that many bugs are

caused because of not only one but multiple types of prob-

lems. A prime example is distributed data races in conjunc-

tion with failures (§6.3); the consequence is that data-race

detectors must include fault injections.

In summary, we perform a large-scale bug study of cloud

systems and uncover interesting findings that we will present

throughout the paper. We make CBSDB publicly avail-

able [9] to benefit the cloud community. Finally, to the best

of our knowledge, we perform the largest bug study for cloud

systems to date.

In the following sections, we first describe our methodol-

ogy (§2), then present our findings based on aspects (§3), bug

scopes (§4), hardware problems (§5), software bugs (§6) and

implications (§7). We then demonstrate other use cases of

CBSDB(§8), discuss related work (§9) and conclude (§10).
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2 Methodology

In this section, we describe our methodology, specifically our

choice of target systems, the base issue repositories, our issue

classifications and the resulting database.

• Target Systems: To perform an interesting cloud bug study

paper, we select six popular and important cloud systems

that represent a diverse set of system architectures: Hadoop

MapReduce [3] representing distributed computing frame-

works, Hadoop File System (HDFS) [6] representing scal-

able storage systems, HBase [4] and Cassandra [1] represent-

ing distributed key-value stores (also known as NoSQL sys-

tems), ZooKeeper [5] representing synchronization services,

and finally Flume [2] representing streaming systems. These

systems are referred with different names (e.g., data-center

operating systems, IaaS/SaaS). For simplicity, we refer them

as cloud systems.

• Issue Repositories: The development projects of our tar-

get systems are all hosted under Apache Software Founda-

tion Projects [8] wherein each of them maintains a highly

organized issue repository.1 Each repository contains devel-

opment and deployment issues submitted mostly by the de-

velopers or sometimes by a larger user community. The term

“issue” is used here to represent both bugs and new features.

For every issue, the repository stores many “raw” labels,

among which we find useful are: issue date, time to resolve

(in days), bug priority level, patch availability, and number

of developer responses. We download raw labels automati-

cally using the provided web API. Regarding the #responses

label, each issue contains developer responses that provide a

wealth of information for understanding the issue; a complex

issue or hard-to-find bug typically has a long discussion. Re-

garding the bug priority label, there are five priorities: trivial,

minor, major, critical, and blocker. For simplicity, we label

the first two as “minor” and the last three as “major”. Al-

though we analyze all issues in our work, we only focus on

major issues in this paper.

• Issue Classifications: To perform a meaningful study of

cloud issues, we introduce several issue classifications as dis-

played in Table 1. The first classification that we perform is

based on issue type (“miscellaneous” vs. “vital”). Vital issues

pertain to system development and deployment problems that

are marked with a major priority. Miscellaneous issues rep-

resent non-vital issues (e.g., code maintenance, refactoring,

unit tests, documentation). Real bugs that are easy to fix (e.g.,

few line fix) tend to be labeled as a minor issue and hence are

also marked as miscellaneous by us. We had to manually add

our own issue-type classification because the major/minor

1Hadoop MapReduce in particular has two repositories (Hadoop and

MapReduce). The first one contains mostly development infrastructure (e.g.,

UI, library) while the second one contains system issues. We use the latter.

Classification Labels

Issue Type Vital, miscellaneous.

Aspect Reliability, performance, availability, security,

consistency, scalability, topology, QoS.

Bug scope Single machine, multiple machines, entire cluster.

Hardware Core/processor, disk, memory, network, node.

HW Failure Corrupt, limp, stop.

Software Logic, error handling, optimization, config, race,

hang, space, load.

Implication Failed operation, performance, component down-

time, data loss, data staleness, data corruption.

Per-component Labels

Cassandra: Anti-entropy, boot, client, commit log, compaction,

cross system, get, gossiper, hinted handoff, IO, memtable, migra-

tion, mutate, partitioner, snitch, sstable, streaming, tombstone.

Flume: Channel, collector, config provider, cross system, mas-

ter/supervisor, sink, source.

HBase: Boot, client, commit log, compaction, coprocessor, cross

system, fsck, IPC, master, memstore flush, namespace, read, region

splitting, log splitting, region server, snapshot, write.

HDFS: Boot, client, datanode, fsck, HA, journaling, namenode,

gateway, read, replication, ipc, snapshot, write.

MapReduce: AM, client, commit, history server, ipc, job tracker,

log, map, NM, reduce, RM, security, shuffle, scheduler, speculative

execution, task tracker.

Zookeeper: Atomic broadcast, client, leader election, snapshot.

Table 1: Issue Classifications and Component Labels.

raw labels do not suffice; many miscellaneous issues are also

marked as “major” by the developers.

We carefully read each issue (the discussion, patches, etc.)

to decide whether the issue is vital. If an issue is vital we

proceed with further classifications, otherwise it is labeled

as miscellaneous and skipped in our study. This paper only

presents findings from vital issues.

For every vital issue, we introduce aspect labels (more in

§3). If the issue involves hardware problems, then we add

information about the hardware type and failure mode (§5).

Next, we pinpoint the software bug types (§6). Finally, we

add implication labels (§7). As a note, an issue can have

multiple aspect, hardware, software, and implication labels.

Interestingly, we find that a bug can simultaneously affects

multiple machines or even the entire cluster. For this purpose,

we use bug scope labels (§4). In addition to generic classifi-

cations, we also add per-component labels to mark where the

bugs live; this enables more interesting analysis (§8).

• Cloud Bug Study DB (CBSDB): The product of our clas-

sifications is stored in CBSDB, a set of raw text files, data

mining scripts and graph utilities [9], which enables us (and

future CBSDB users) to perform both quantitative and qual-

itative analysis of cloud issues.

As shown in Figure 1a, CBSDB contains a total of 21,399

issues submitted over a period of three years (1/1/2011-

1/1/2014) which we analyze one by one. The majority of

the issues are miscellaneous issues (83% on average across
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the six systems). We then carefully annotate the vital issues

(3655 in total) using our complete issue classifications. In to-

tal, we have added 25,309 labels for vital issues in CBSDB.

• Threats to validity: To improve the validity of our classi-

fications, each issue is reviewed in at least two passes. If an

ambiguity arises when we tag an issue, we discuss the ambi-

guity until we reach a unified conclusion. Each issue cited in

this paper has been discussed by 3–4 people. Although these

actions are by no means complete, we believe they help im-

proving the accuracy of CBSDB significantly.

• In-paper presentation: The following sections are orga-

nized by issue classifications (Table 1). All the bugs dis-

cussed and graphs shown only come from vital issues. For

each classification, we present both quantitative and quali-

tative findings and also introduce further sub-classifications.

For each sub-classification, we cite some interesting issues

as footnotes (e.g., m2345). The footnotes contain hyperlinks;

interested readers can click the links to read more discussions

by the developers.

In the rest of this paper, “bugs/issues” imply vital issues,

“the system(s)” implies a general reference to our target sys-

tems, “main protocols” imply user-facing operations (e.g.,

read/write) and “operational protocols” imply non-main pro-

tocols such as background daemons (e.g., gossiper) and ad-

ministrative protocols (e.g., node decommissioning). We also

use several abbreviations.1

3 Issue Aspects

The first classification that we perform is by aspect. Figure 1b

shows the distribution of the eight aspects listed in Table 1.

Below we discuss each aspect; for interesting discussions, we

focus on aspects such as data consistency, scalability, topol-

ogy and QoS.2

3.1 Reliability, Performance, and

Availability Aspects

Reliability (45%), performance (22%) and availability (16%)

are the three largest categories of aspect. Since they represent

classical system problems, we will weave interesting exam-

ples in later sections when we discuss killer bugs, hardware

and software problems.

1 SPoF: single point of failure; OOM: out-of-memory; GC: garbage

collection; WAL: write-ahead logging; DC: data center; AM: application

master; NM: node manager; RM: resource manager; HA: high availability;
CS: Cassandra; FL: Flume; HB: HBase; HD: HDFS; MR: MapReduce; ZK:

ZooKeeper.
2 We skip the discussion of security aspect as we lack expertise in that

area. Interested readers can study security problems by downloading CB-

SDB [9] for further analysis.
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Figure 1: Issue Type and Aspect. Figures (a) and (b) show the

classification of issue types and aspects respectively. An issue can

have multiple aspects.

3.2 Data Consistency Aspect

Data consistency means that all nodes or replicas agree on

the same value of a data (or eventually agree in the context of

eventual consistency). In reality, there are several cases (5%)

where data consistency is violated and users get stale data

or the system’s behavior becomes erratic. The root causes

mainly come from logic bugs in operational protocols (43%),

data races (29%) and failure handling problems (10%).1 Be-

low we expand these problems.

a Buggy logic in operational protocols: Besides the main

read/write protocols, many other operational protocols (e.g.,

bootstrap, cloning, fsck) touch and modify data, and bugs

within them can cause data inconsistency. For example, when

bootstrapping a node, Cassandra should fetch the necessary

number of key-value replicas from multiple neighbors de-

pending on the per-key consistency level, but a protocol bug

fetches only one replica from the nearest neighbor. In an-

other protocol, cross-DC synchronization, the compression

algorithm fails to compress some key-values, catches the er-

ror, but allows the whole operation to proceed, silently leav-

ing the two DCs with inconsistent views after the protocol

“finishes”. In HBase, due to connection problems during the

cloning operation, metadata is cloned but the data is not. Be-

yond these examples, there are many other implementation

bugs that make cloud systems treat deleted data as valid ones,

miss some transactions logs, or forget to wipe out memoized

values in some functions, all causing data staleness.

b Concurrency bugs and node failures: Intra-node data

races are a major culprit of data inconsistency. As an exam-

ple, data races between read and write operations in updat-

ing the cache can lead to older values written to the cache.

Inter-node data races (§6.3) are also a major root cause; com-

1 The correlation graphs between aspects and hardware/software prob-

lems are not shown due to space constraints.

§3.2: ac2434, c5391, hb6359, hb7352, m4342; bc3862, z1549.
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plex re-ordering of asynchronous messages combined with

node failures make systems enter incorrect states (e.g., in

ZooKeeper, committed transactions in different nodes have

different views).

Summary: Operational protocols modify data replicas, but

they tend to be less tested than the main protocols, and thus

often carry data inconsistency bugs. We also find an interest-

ing scenario: when cloud systems detect data inconsistencies

(via some assertions), they often decide to continue running

even with incorrectness and potential catastrophes in the fu-

ture. Availability seems to be more important than consis-

tency; perhaps, a downtime “looks worse” than running with

incorrectness.

3.3 Scalability Aspect

Scalability aspect accounts for 2% of cloud issues. Although

the number is small, scalability issues are interesting because

they are hard to find in small-scale testing. Within this cat-

egory, software optimization (29%), space (21%) and load

(21%) problems are the dominant root causes. In terms of im-

plications, performance problems (52%), component down-

times (27%), and failed operations (16%) are dominant. To

understand deeper the root problems, we categorize scalabil-

ity issues into four axes of scale: cluster size, data size, load,

and failure.

a Scale of cluster size: Protocol algorithms must anticipate

different cluster sizes, but algorithms can be quadratic or cu-

bic with respect to the number of nodes. For example, in Cas-

sandra, when a node changes its ring position, other affected

nodes must perform a key-range recalculation with a com-

plexity Ω(n3). If the cluster has 100-300 nodes, this causes

CPU “explosion” and eventually leads to nodes “flapping”

(i.e., live nodes are extremely busy and considered dead) and

requires whole-cluster restart with manual tuning.

Elasticity is often not tested thoroughly; system admin-

istrators assume they can decommission/recommission any

number of nodes, but this can be fatal. As an example, In

HDFS, when a large number of nodes are decommissioned

and recommissioned, a significant amount of extra load (mil-

lions of migrated blocks and log messages) bogs down criti-

cal services.

b Scale of data size: In the Big Data era, cloud systems must

anticipate large data sizes, but it is often unclear what the

limit is. For instance, in HBase, opening a big table with

more than 100K regions undesirably takes tens of minutes

due to an inefficient table look-up operation. In HDFS, the

boot protocol does not scale with respect to the number

of commit log segments, blocks (potentially millions), and

§3.3: ahd4075, c3881, c6127; bc4415, hd2982, hb8778, hb9208;
cc5456, hb4150, hd4479, hd5364; dm3711, m4772, m5043, z1049.

inter-node reboot messages; whole-cluster reboot can take

tens of minutes. Similarly in HBase, the log cleanup pro-

cess is O(n2) with respect to the number of log files; this

slow process causes HBase to fall behind in serving incom-

ing requests. We also find cases where users submit queries

on large data sets that lead to OOM at the server side; here,

users must break large queries into smaller pieces (§6.5).

c Scale of request load: Cloud systems sometimes cannot

serve large request loads of various kinds. For example, some

HDFS users create thousands of small files in parallel caus-

ing OOM; HDFS does not expect this because it targets big

files. In Cassandra, users can generate a storm of deletions

that can block other important requests. In HDFS, when a

job writing to 100,000 files is killed, HDFS experiences a

burst of lease recovery that causes other important RPC calls

such as lease renewals and heartbeats to be dropped. We also

find small problems such as small leaks that can become sig-

nificant during high load (§6.6).

d Scale of failure: At scale, a large number of components

can fail at the same time, but recovery is often unprepared.

For example, in MapReduce, recovering 16,000 failed map-

pers (if AM goes down) takes more than 7 hours because of

an unoptimized communication to HDFS. In another case,

when a large number of reducers report fetch failures, tasks

are not relaunched until 2 hours (because of a threshold er-

ror). Also, an expensive O(n3) recovery (a triple for-loop pro-

cessing) is magnified when MapReduce experiences thou-

sands of task failures. In ZooKeeper, when 1000 clients si-

multaneously disconnect due to network failures, a session-

close stampede causes other live clients to be disconnected

due to delays in heartbeat responses.

Summary: Scalability problems surface late in deployment,

and this is undesirable because users are affected. More re-

search is needed to unearth scalability problems prior to de-

ployment. We also find that main read/write protocols tend to

be robust as they are implicitly tested all the time by live user

workloads. On the other hand, operational protocols (recov-

ery, boot, etc.) often carry scalability bugs. Therefore, oper-

ational protocols need to be tested frequently at scale (e.g.,

with “live drills” [12, 32]). Generic solutions such as loose

coupling, decentralization, batching and throttling are popu-

lar but sometimes they are not enough; some problems re-

quire fixing domain-specific algorithms.

3.4 Topology Aspect

In several cases (1%), protocols of cloud systems do not work

properly on some network topology. We call this topology

bugs; they are also intriguing as they are typically unseen in

pre-deployment. Below we describe three matters that pertain

to topology bugs.
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a Cross-DC awareness: Recently, geo-distributed systems

have gained popularity [37, 47, 56]. In such settings, commu-

nication latency is higher and thus asynchrony is a fundamen-

tal attribute. However, some protocols are still synchronous

in nature (e.g., Cassandra hint delivery can take one day and

stall a cross-DC Cassandra deployment). We also find various

logic problems related to cross-DC. For example, in HBase,

two DCs ping-pong replication requests infinitely and in Cas-

sandra, time-dependent operations fail because of time drift

between two DCs.

b Rack awareness: We find cases where operational pro-

tocols such as recovery are not rack aware. For example,

when a mapper and a reducer run in separate racks with a

flaky connection, MapReduce always judges that the mapper

node (not the network) is the problem and hence blacklisted.

MapReduce then re-runs the mapper in the same rack, and

eventually all nodes in the rack are incorrectly blacklisted;

a better recovery is to precisely identify cross-rack network

problems. In an HDFS two-rack scenario, if the namenode

and datanode-1 are in rack-A, a client and datanode-2 are in

rack B, and the cross-rack network is saturated, the namen-

ode will de-prioritize datanode-2, and thus forcing the client

to connect via datanode-1 although in such a topology the

communication between client and datanode-2 in rack B is

more optimum.

c New layering architecture: As cloud systems mature, their

architectures evolve (e.g., virtual nodes are added in Cassan-

dra and node groups in HDFS). These architectural changes

are not always followed with proper changes in the affected

protocols. For example, in Cassandra, with virtual nodes (vn-

ode), the cluster topology and scale suddenly change (256

vnodes/machine is the default), but many Cassandra pro-

tocols still assume physical-node topology which leads to

many scalability problems (e.g., gossip protocol cannot deal

with orders of magnitude increase in gossip messages). In

HDFS, node groups lead to many changes in protocols such

as failover, balancing, replication and migration.

Summary: Users expect cloud systems to run properly on

many different topologies (i.e., different number of nodes,

racks, and datacenters, with different network conditions).

Topology-related testing and verification are still minimal

and should be a focus of future cloud dependability tools.

Another emphasis is that changes in topology-related archi-

tectures are often not followed with direct changes in the af-

fected protocols.

§3.4: ac3577, c4761, c5179, hb7709; bc5424, hd3703, m1800; cc6127,

hd3495, hd4240, hd5168.

3.5 QoS Aspect

QoS is a fundamental requirement for multi-tenant sys-

tems [46, 49]. QoS problems in our study are relatively small

(1%), however it should be viewed as an unsolved problem

as opposed to a non-problem. Below, we highlight the two

main QoS discussion points in our study.

a Horizontal/intra-system QoS: There are many issues

about heavy operations affecting other operations that the de-

velopers can quickly fix with classic techniques such as ad-

mission control, prioritization and throttling. However, care

must be taken when introducing thresholds in one protocol

as it can negatively impact other protocols. For example, in

HDFS, throttling at the streaming level causes requests to

queue up at the RPC layer.

b Vertical/cross-system QoS: Herein lies the biggest chal-

lenge of QoS; developers can only control their own system

but stackable cloud systems demand for an end-to-end QoS.

For instance, HBase developers raise questions about how

QoS at HBase will be translated at the HDFS or MapReduce

layer. Also, some techniques such as throttling are hard to en-

force all the way to the OS level (e.g., disk QoS involve many

metrics such as bandwidth, IOPS, or latency). There are also

discussions about the impact of a lack of control to QoS ac-

curacy (e.g., it is hard to guarantee QoS when the developers

cannot control Java GC).

Summary: Horizontal QoS is easier to guarantee as it only

involves one system. Cloud systems must check that QoS en-

forcement in one protocol does not negatively impact others.

Vertical QoS seems far from reach; developers do not have

an end-to-end control and not many cross-system QoS ab-

stractions have been proposed [46]. Increasing the challenge

is the fact that open-source cloud systems were not born with

QoS in mind and most likely must change radically.

4 “Killer Bugs”

By studying issues of large-scale systems, we have the op-

portunity to study what we call as “killer bugs”, that is, bugs

that simultaneously affect multiple nodes or even the entire

cluster (Figure 2). This particular study is important because

although the “no-SPoF” principle has been preached exten-

sively within the cloud community, our study reveals that

SPoF still exists in many forms, which we present below.

a Positive feedback loop: This is the case where failures hap-

pen, then recovery starts, but the recovery introduces more

load and hence more failures [29, 32]. For example, in Cas-

sandra, gossip traffic can increase significantly at scale caus-

§3.5: ahb9501, hd4412, hd5639, m1783; bc4705, hb4441, hd5499.
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Figure 2: Killer bugs. The figure shows heat maps of correlation

between scope of killer bugs (multiple nodes or whole cluster) and

hardware/software root causes. A killer bug can be caused by mul-

tiple root causes. The number in each cell represents the bug count.

ing the cluster unstable for hours. As live nodes are incor-

rectly declared dead, administrators or elasticity tools might

add more nodes to the cluster, which then causes more gos-

sip traffic. Cloud systems should better identify positive feed-

back loops.

b Buggy failover: A key to no-SPoF is to detect failure and

perform a failover. But, such guarantee breaks if the failover

code itself is buggy. For example, in HBase, when a failover

of metadata region server goes wrong, the whole cluster

ceases to work because the whole-cluster metadata (META

and ROOT tables) are not accessible; interestingly, we see

this issue repeats four times in our study. Similarly in HA-

HDFS, when a failover to a standby namenode breaks, all

datanodes become unreachable. Our deeper analysis reveals

that bugs in failover code surface when failover experiences

another failure. Put simply, failover in failover is brittle [25].

A buggy failover is a killer bug when the affected compo-

nents are a SPoF (e.g., master node, metadata tables).

c Repeated bugs after failover: Another key to no-SPoF

is that after a successful failover, the system should be able

to resume the previously failed operation. This is true if the

cause was a machine failure, but not true for a software bug.

In other words, if after a failover the system must run the

same buggy logic again, then the whole process will repeat

and the entire cluster will eventually die. For example, In

HBase, when a region server dies due to a bad handling of

corrupt region files, HBase will failover to another live re-

gion server that will run the same code and will also die. As

this repeats, all region servers go offline. We see this issue re-

peated three times in our study. Similar issues happen when a

region server encounters different kinds of problems such as

log-cleaning exception. To reduce the severity of these killer

bugs, cloud systems must distinguish between hardware fail-

ures and software logic bugs. In the latter case, it is better to

stop the failover rather than killing the entire cluster.

d A small window of SPoF: Another key to no-SPoF is

ensuring failover ready all the time. We find few interest-

§4: ac3831; bhb3446, hd4455; chb3664, hb9737; dz1699; ehd2086,

z1005; f c3832, c5244, hd5016; gc6127, m2214, z1049.

ing cases where failover mechanisms are disabled briefly for

some operational tasks. For example, in ZooKeeper, during

dynamic cluster reconfiguration, heartbeat monitoring is dis-

abled, and if the leader hangs at this point, a new leader can-

not be elected.

e Buggy start-up code: Starting up a large-scale system is

typically a complex operation, and if the start-up code fails

then all the machines are unusable. For example, ZooKeeper

leader election protocol is bug prone and can cause no leader

to be elected; without a leader, ZooKeeper cluster cannot

work. Similarly, we find issues with HDFS namenode start-

up protocol.

f Distributed deadlock: Our study also unearths interest-

ing cases of distributed deadlock where each node is waiting

for other nodes to progress. For example, during start-up in

Cassandra, it is possible that all nodes never enter a normal

state as they keep gossiping. This coordination deadlock also

happens in other Cassandra protocols such as migration and

compaction and is typically caused by message re-orderings,

network failures or software bugs. Distributed deadlock can

also be caused by “silent hangs” (more in §6.4). For exam-

ple, in HDFS, a disk hang on one node causes the whole

write pipeline to hang. As catching local deadlock is chal-

lenging [51], it is more so for distributed deadlock.

g Scalability and QoS bugs: Examples presented in Sec-

tions 3.3 and 3.5 highlight that scalability and QoS bugs can

also affect the entire cluster.

Summary: The concept of no-SPoF is not just about a simple

failover. Our study reveals many forms of killer bugs that can

cripple an entire cluster (potentially hundreds or thousands

of nodes). Killer bugs should receive more attention in both

offline testing and online failure management.

5 Hardware Issues

Figure 3a shows the percentage of issues that involve hard-

ware failures. We perform this particular study because we

are interested to know fundamental reasons why cloud sys-

tems cannot always deal with well-known hardware failure

modes (Figure 3b).

a Fail-stop: Cloud systems are equipped with various mech-

anisms to handle fail-stop failures. There are several rea-

sons why fail-stop recovery is not trivial. First, interleaving

events and failures (e.g., node up and down, message reorder-

ing) can force the system to enter unexpected states (more

in §6.3). The use of coordination services (e.g., ZooKeeper

usage in HBase) does not simplify the problem (e.g., many

cross-system issues; more in §8). As mentioned before, a se-
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Figure 3: Hardware Faults. Figure (a) shows the distribution

of software (87%) and hardware (13%) faults. Figure (b) shows the

heat map of correlation between hardware type and failure mode.

The number in each cell is a bug count. If we see a component dies

without any explanation, we assume it is a node failure. We did not

find any report of CPU failure (perhaps because CPU failure trans-

lates to node failure).

ries of multiple failures is often not handled properly and

massive failures can happen (§3.3, §4).

b Corruption: It is widely known that hardware can corrupt

data [11, 45] and thus end-to-end checksums are deployed.

However, checksums are not a panacea. We find cases where

detection is correct but not the recovery (e.g., HDFS recov-

ery accidentally removes the healthy copies and retains the

corrupted ones). Software bugs can also make all copies of

data corrupted, making end-to-end checksums irrelevant. We

also find an interesting case where a bad hardware generates

false alarms, causing healthy files marked as corrupted and

triggering unnecessary large data recovery.

c Limp Mode: A good hardware can become a “limp-

ware” [20]. We strengthen the case that cloud systems are not

ready in dealing with limpware. For example, HDFS assumes

disk I/Os will eventually finish, but when the disk degrades,

a quorum of namenodes can hang. In an HBase deployment,

developers observed a memory card that runs only at 25% of

normal speed, causing backlogs, OOM, and crashes.

Summary: As hardware can fail, “reliability must come

from software” [17]. Unfortunately, dealing with hardware

failures is not trivial. Often, cloud systems focus on “what”

can fail but not so much on the scale (§3.3) or the “when”

(e.g., subsequent failures during recovery). Beyond the fail-

stop model, cloud systems must also address other failure

modes such as corruption and limpware [16, 20, 21]. Relia-

bility from software becomes more challenging.

6 Software Issues

We now discuss various kinds of software bugs that we find

in cloud systems along with their implications. Figures 4a

and 4b show the distribution of software bug types and bug

§5: ac6531, hb9721, hd5438, m5489, z1294; bhd1371, hd2290,

hd3004, hd3874, z1453; chb3813, hd1595, hd3885, hd4859, hd5032.
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Figure 4: Software Faults and Implications. Figures (a) and (b)

show the breakdown of different software faults and implications

respectively. For few vital issues that are about new features (i.e.,

a non-bug) without clear root causes and implications, no corre-

sponding labels are added.

implications respectively, and Figure 5 shows their correla-

tion. Domain-specific bugs that cannot be classified into a

general bug type are marked as “logic” bugs. Below, we dis-

cuss general bug types; we skip the discussion of logic and

optimization bugs.

6.1 Error Handling

Both hardware and software can fail, and thus error-handling

code is a necessity. Unfortunately, it is a general knowledge

that error-handling code introduces complexity and is prone

to bugs [26, 55]. In our study, error-handling bugs are the

2nd largest category (18%) after logic bugs and can lead to

all kinds of implications (Figure 5). Below, we break down

error-handling bugs into three classes of problems.

a Error/failure detection: Before failures can be handled,

they must be first detected, but detection is not always per-

fect. First, errors are often ignored (e.g., ignored Java excep-

tions). Second, errors are often incorrectly detected. For ex-

ample, in an HDFS protocol, network failure is considered

as disk failure which can trigger a flurry of check-disk storm.

In HDFS write pipeline, which node is problematic is hard

to pinpoint. In MapReduce, a bad network between a mapper

and a reducer is wrongly marked as the map node’s fault.

Failure detection in asynchronous protocols depends on

timeouts. We find a large number of timeout issues. If time-

out is too short, it can cause false positives (e.g., nodes un-

der high load are considered dead leading to an unnecessary

replication storm). If timeout is too long, some operations

appear to hang (§6.4). A more complex problem is cross-

system timeouts. For example, a node is declared dead af-

§6.1: ahd3703, hd3874, hd3875, hd4581, hd4699, m1800; bhb4177,

hd3703, hd4721, z1100; cc6364, hb4397, hd4239, m3993.
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ter 10 minutes in HDFS and 30 seconds in HBase; this dis-

crepancy causes problems for HBase. Here, one solution is

to have multiple layers share the same failure detector [34],

but this might be hard to realize across different groups of

software developers.

b Error propagation: After an error is detected, the error

might need to be propagated to and handled by upper lay-

ers. Interesting error-propagation problems arise in layered

systems. For example, for some operations, HBase relies on

HDFS to detect low-level errors and notify HBase. But when

HDFS does not do so, HBase hangs. This example represents

one major reason behind many silent failures across systems

and components that we observe in our study.

c Error handing: After error information is propagated to

the right layer or component, proper failure handling must

happen. But, we find that failure handling can be “confused”

(e.g., not knowing what to do as the system enters some

corner-case states), non-optimum (e.g., not topology aware),

coarse-grained (e.g., a disk failure causes a whole node with

12 disks to be decommissioned), and best effort but not 100%

correct (e.g., in order to postpone downtime, Cassandra node

will stay alive if data disk is dead and commit disk is alive).

Summary: Dealing with errors involves correct error detec-

tion, propagation, and handling, but bugs can appear in each

stage. We just touch few cases above, but with over 500 error-

handling issues we tag in CBSDB, research community in

dependability can analyze the issues deeper. Simple testing

of error handling can uncover many flaws [55]. Overall, we

find cloud systems code lacks of specifications of what error

handling should do, but in most discussions the developers

know what the code ideally should perform. This “specifica-

tion gap” between systems code and developers needs to be

narrowed.

6.2 Configuration

Configuration issues are the 4th largest category (14%) and

recently become a hot topic of research [10, 30, 42, 52, 54].

Below we discuss two interesting types of configuration

problems we find in our study.

a Wrong configuration: Setting configurations can be a

tricky process. We find cases such as users providing wrong

inputs, accidental deletion of configuration settings during

upgrade, backward-compatibility issues when cloud systems

move from static to dynamic online configurations, OS-

compatibility issues, and incorrect values not appropriate for

some workload.

Interestingly, configuration problems can lead to data loss

and corruption (Figure 5). In MapReduce, users can acciden-

§6.2: af533, m5211, m5367; bhb5349, hb5450, hb5930.
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Figure 5: Software/Hardware Faults & Implications. The two

figures represent heat maps of correlation between implications and

hardware (and software) faults.

tally set the same working directory for multiple jobs without

warning from the system. Reducers’ intermediate files can

collide during merge because output files are not unique. In

Flume, a simple mistake in line length limitation can cause

corrupt messages.

b Multiple configurations: As users ask for more control,

more configuration parameters are added over time, which

by implication leads to more complexity. Not understanding

the interaction of multiple parameters can be fatal. For ex-

ample, an HBase administrator disables the WAL option and

assumes in-memory data will be flushed to the disk period-

ically (but HBase does not do so when WAL is disabled).

After learning that the HBase users lose the entire 2 weeks of

data, HBase developers add more guards to prevent the case

to happen again.

Summary: Configuration has become a significant deploy-

ment problem. Users, administrators, and even developers

sometimes do not have a full understanding of how all the

parameters interplay. They wish that the system gives them

feedback about which configuration parameters matter in dif-

ferent deployments. We only touch few cases above, but we

hope that the cloud community in configuration research can

further analyze hundreds of configuration issues in CBSDB.

6.3 Data Races

Data races are a fundamental problem in any concurrent

software systems and a major research topic in the last

decade [39]. In our study, data races account for 12% of

software bugs. Unlike non-distributed software, cloud sys-

tems are subject to not only local concurrency bugs (e.g.,

due to thread interleaving) but also distributed concurrency

bugs (e.g., due to reordering of asynchronous messages). We

find that many distributed data races surface when failures

happen, such as the one in Figure 6. More examples can be

found in CBSDB.a In our recent work [33], we elaborate this
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m4819 (1) RM assigns an application to AM, (2) AM sees

the completion of the application, (3) AM notifies Client

and RM that the application completes, (4) AM crashes be-

fore RM receives the notification and unregisters the AM,

(5) RM sees AM is down, and since it did not receive the

notification, it re-runs another AM that writes the same files

as previous AM (6) then before new AM finishes, client re-

ceives the notification and starts to consume the output, thus

getting partial output (“corrupt” result).

Figure 6: “Distributed” data races. The sequence of operations

above represents a data race bug in distributed context due to con-

current messages.

whole issue in great detail and present one solution towards

the problem.

Summary: Numerous efforts in solving local concurrency

bugs have been published in hundreds of papers. Unfortu-

nately, distributed concurrency bugs have not received the

same amount of attention. Yet, in our study, we find that dis-

tributed data races account for more than 50% of data race

bugs. The developers see this as a vexing problem; an HBase

developer wrote “do we have to rethink this entire [system]?

There isn’t a week going by without some new bugs about

races between [several protocols].” Model checkers targeted

for distributed system [28, 33, 53] are one solution, however

we believe a larger and broader research is needed in this

space (e.g., how to extend numerous bug-finding techniques

for local concurrency bugs for distributed context? how to

reproduce them? [35]).

6.4 Hang

This section presents our findings behind hang-related issues

which account for 4% of software bugs in our target systems.

In software engineering, hang is usually attributed to dead-

lock [50], however, cloud developers have a broader mean-

ing of hang. In particular, an operation that is supposedly

short but takes a significantly long time to finish is consid-

ered hanging.

a Silent hangs: Timeouts are usually deployed around opera-

tions that can hang (e.g., network operation). However, due to

the complexity of large code base, some system components

that can hang are sometimes overlooked (i.e., timeoutless).

For example, MapReduce developers did not deploy timeout

for hanging AMs, but then they realized that AM is highly

complex and can hang for many reasons such as RM excep-

tions, data races, failing tasks, and OOM.

We also find few cases of “false heartbeats”. A node typ-

ically has a heartbeat thread and several worker threads. A

§6.3: ac2105, c3306, c4571, f543, hb6060, hb6299, hd2791, m4099,

m4157, m4252, m5001, m5476, z1090, z1144, z1496, z1448.

§6.4: am3596, m3355, m3274; bhd3166, hd4176, m2209, m4797;
chd5299, m3228, m4425, m4751, m4088; dSee §4.

buggy heartbeat thread can keep reporting good heartbeats

even though some worker threads are hanging, and hence the

silent hang. This hints that the relationship between heartbeat

and actual progress can have a loophole.

b Overlooked limp mode: As mentioned before, hardware

can exhibit a limp mode (§5). Although in many cases de-

velopers anticipate this (e.g., network slowdown) and deploy

timeouts (mainly around main protocols), there are some pro-

tocols that are overlooked. One prime example is job re-

source localization in MapReduce which is not regulated un-

der speculative execution. Here, when a job downloads large

JAR files over a degraded network, there is no timeout and

failover. Similar stories can be found in other systems.

c Unserved tasks: Hang can also be defined as a situation

where nodes are alive, but tasks stay in the queue forever

and never get executed. We find this type of issue several

times, mostly caused by deep data race and logic bugs that

lead to corner-case states that prevent the system to perform

a failover. For example, in MapReduce, tasks can get stuck

in a “FailContainerCleanUp” stage that prevents the tasks to

be relaunched elsewhere.

d Distributed deadlock: As described earlier, this problem

can cause the whole cluster to hang (§4).

Summary: One expectation of the no-SPoF principle is that

systems should not hang; a hang should be treated as a fail-

stop and failed over. The cases above show that hang is still

an intricate problem to solve.

6.5 Space

In cloud systems targeted for Big Data, space management

(both memory and storage) becomes an important issue (4%

of software problems). Below we describe prevalent issues

surrounding space management.

a Big data cleanup: Big old data can easily take up space

and require quick cleanup. Cloud systems must periodically

clean a variety of big old data such as old error logs, commit

logs, and temporary outputs. In many cases, cleanup proce-

dures are still manually done by administrators. If not done

in timely fashion, tight space can cause performance issues

or downtimes.

b Insufficient space: Jobs/queries can read/write a large

amount of data. We find cases where many jobs fail or hang in

the middle of the execution when there is no available mem-

ory. Big jobs are not automatically sliced, and thus users must

manually do so.

§6.5: ac3005, c3741, hb5611, hb9019, hb9208; bm2324, m5251,

m5689; cc4708, hd3334, hd3373, m5351, z1163, z1431, z1494.
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c Resource leak: Resource leak is a form of bad space

management. We observe a variety of leaks such as mem-

ory, socket, file descriptor, and system-specific leaks (e.g.,

streams). In many instances, leaks happen during recovery

(e.g., sockets are not closed after recovery). Surprisingly,

memory leaks happen in “Java-based” cloud systems; it turns

out that the developers do not favor Java GC (§6.6) and de-

cide to manage the memory directly via C malloc or Java

bytebuffer, but then careless memory management leads to

memory leaks.

Summary: Big data space management is often a manual

process. More work on automated space management seems

to be needed [27].

6.6 Load

Load-related issues (4%) surface when cloud systems ex-

perience a high request load. Below we discuss several

causes behind load issues.

a Java GC: Load-intensive systems cause frequent memory

allocation/deallocation, forcing Java GC to run frequently.

The problem is that Java GC (e.g., “stop-the-world” GC) can

pause 8-10 seconds per GB of heap; high-end servers with

large memory can pause for minutes [36]. The developers

address this with manual memory management (e.g., with C

malloc or Java bytebuffer). This provides stable performance

but also potentially introduces memory leaks (§6.5).

b Beyond limit: Many times, cloud systems try to serve all

requests even if the load is beyond their limit. This can cause

problems such as backlogs and OOM, which then make the

system die and cannot serve any requests. It seems better for

cloud systems to know their limits and reject requests when

overloaded.

c Operational loads: As alluded in Section 3.5, without hor-

izontal QoS, request and operational loads can bog down

other important operations. For example, we see many sit-

uations where error logging creates a large number of disk

writes downgrading main operations. This kind of problem

is largely found in deployment, perhaps because operational

protocols are rarely tested offline with high load.

Summary: Java memory management simplifies users but

is not suitable for load-intensive cloud systems. Research on

stable and fast Java GC is ongoing [24]. As load issues are

related to space management, work on dense data structures

is critical [22, 44]. Load tests are hard to exercise in offline

testing as live loads can be orders of magnitude higher. Live

“spike” tests recently become an accepted practice [43], but

§6.6: ac5506, c5521, hb4027, hb5347, hb10191, hd4879; bc4415,

hb3421, hb5141, hb8143, m5060, c4918; cSee §3.5.

Cassandra HBase MapReduce

Get 95 RegionServer 418 AM 141
Compaction 93 Master 239 NM 69

Mutate 90 Client 238 RM 63

Sstable 86 Cross 172 TaskTracker 60

Client 64 Coprocessors 57 JobTracker 51

Boot 52 Log splitting 46 Security 50

Cross 49 IPC 38 Reduce 44

Gossiper 47 Fsck 33 Client 43

Memtable 37 Snapshot 27 HistoryServer 35
Streaming 31 Commit log 24 Map 28

Table 2: Top-10 “Problematic” Components. The table shows

top-10 components with the highest count of vital issues in Cassan-

dra, HBase and MapReduce.

they mainly test load sensitivities of main protocols; opera-

tional protocols should be load tested as well.

7 Implications

Throughout previous sections, we have implicitly presented

how hardware and software failures can lead to a wide range

of implications, specifically failed operations (42%), perfor-

mance problems (23%), downtimes (18%), data loss (7%),

corruption (5%), and staleness (5%), as shown in Figure 4b.

In reverse, Figure 5 also depicts how almost every impli-

cation can be caused by all kinds of hardware and software

faults. As an implication, if a system attempts to ensure reli-

ability on just one axis (e.g., no data loss), the system must

deploy all bug-finding tools that can catch all software fault

types and ensure the correctness of all handlings of hardware

failures. Building a highly dependable cloud system seems to

be a distant goal.

8 Other Use Cases of CBSDB

In the main body of this paper, we present deep discussions

of bug aspects, root causes (hardware and software) and im-

plications, and due to space constraints, we unfortunately do

not show deeper quantitative analysis. Nevertheless, CBSDB

contains a set of rich classifications (§2) that can be cor-

related in various different ways which can enable a wide

range of powerful bug analysis. In the last one year, we have

created more than 50 per-system and aggregate graphs from

mining CBSDB, some of which we demonstrate in this sec-

tion. As we will make CBSDB public, we hope it encourages

the larger cloud research community to perform further bug

studies beyond what we have accomplished.

• Longest time to resolve and most commented: The

raw bug repositories contain numeric fields such as time to

resolve (TTR) and number of developer responses, which

when combined with our annotations can enable a power-

ful analysis. For example, Figures 7a and 7b can help an-

swer questions such as “which software bug types take the
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Figure 7: Case Studies. Figures (a) and (b) show CDFs of software bug types (only four types for graph clarity) based on TTR and

#responses. Figure (c) shows the distribution of software bugs as described in §8. Figure (d) shows MapReduce bug evolution.

longest/shortest time to resolve or have the most/least num-

ber of responses?”. The figures hint that optimization prob-

lems overall have larger TTR and #responses than logic bugs.

• Top 1% or 10%: Using CDFs from the previous analysis,

we can further derive another empirical analysis as shown in

Figure 7c which can answer questions such as “what is the

distribution of software bug types in the top 1% (or 10%) of

most responded (or longest-to-resolve) issues?”. It is inter-

esting to see that within the top 1% most responded bugs,

optimization problems cover more than 50% of the issues,

but only 10% within the top 1% longest-to-resolve issues.

• Per-component analysis: As shown in Table 1 we also

add component labels for every system. These labels are use-

ful to answer questions such as “which components have

significant counts of issues?”. Empirical data in Table 2

can help answer such question. We can see cross-system is-

sues (“cross”) are quite prevalent across our target systems.

Thus, one can further analyze issues related to how multiple

cloud systems interact (e.g., HBase with HDFS, HBase with

ZooKeeper). To perform a wide range of component-based

analysis, CBSDB users can also correlate components with

other bug classifications. For example, one can easily query

which components carry data race bugs that lead to data loss.

• Bug evolution: Finally, CBSDB users can also analyze bug

evolution. For example, Figure 7d shows how issues in dif-

ferent MapReduce components are laid out over time. The

spike from mid-2011 to mid-2012 represents the period when

Hadoop developers radically changed Hadoop architecture to

Hadoop 2.0 (Yarn) [48].

9 Related Work

Throughout the entire paper, we cite related work around

each discussion theme. In this section, we briefly discuss

other bug-study papers.

Studies of bug/error reports from various systems have

proven to be invaluable to the research community. For in-

stance, Chou et al. [15] study more than 1000 operating sys-

tem bugs found by static analysis tools applied to the Linux

and OpenBSD kernels; Lu et al. [39] perform a comprehen-

sive study of more than 100 local concurrency bugs; Yin et

al. [54] study 546 real-world misconfiguration issues from

a commercial storage system and four different open-source

systems; finally, Lu et al. [38] cover eight years of Linux file-

system changes across 5079 patches and study in detail 1800

of the patches. These studies bring significant contributions

in improving software systems reliability.

10 Conclusion

We perform the first bug study of cloud systems. Our study

brings new insights on some of the most vexing problems

in cloud systems. We show a wide range of intricate bugs,

many of which are unique to distributed cloud systems (e.g.,

scalability, topology, and killer bugs). We believe our work

is timely especially because cloud systems are considerably

still “young” in their development. We hope (and believe)

that our findings and the future availability of CBSDB can be

beneficial for the cloud research community in diverse areas

as well as to cloud system developers.
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