
Design Considerations and Analysis of
Multi-Level Erasure Coding in Large-Scale Data Centers

Meng Wang
University of Chicago

Chicago, IL, USA
wangm12@uchicago.edu

Jiajun Mao
University of Chicago

Chicago, IL, USA
jiajunm@uchicago.edu

Rajdeep Rana
University of Chicago

Chicago, IL, USA
rajrana22@uchicago.edu

John Bent
Los Alamos National Laboratory

Los Alamos, NM, USA
johnbent@gmail.com

Serkay Olmez
Seagate Research

Longmont, CO, USA
serkay.olmez@seagate.com

Anjus George
Oak Ridge National Laboratory

Oak Ridge, TN, USA
georgea@ornl.gov

Garrett Wilson Ransom
Los Alamos National Laboratory

Los Alamos, NM, USA
gransom@lanl.gov

Jun Li
CUNY Queens College and Graduate

Center
New York, NY, USA
jun.li@qc.cuny.edu

Haryadi S. Gunawi
University of Chicago

Chicago, IL, USA
haryadi@cs.uchicago.edu

ABSTRACT
Multi-level erasure coding (MLEC) has seen large deployments in
the field, but there is no in-depth study of design considerations
for MLEC at scale. In this paper, we provide comprehensive design
considerations and analysis of MLEC at scale. We introduce the
design space of MLEC in multiple dimensions, including various
code parameter selections, chunk placement schemes, and various
repair methods. We quantify their performance and durability, and
show which MLEC schemes and repair methods can provide the
best tolerance against independent/correlated failures and reduce
repair network traffic by orders of magnitude. To achieve this, we
use various evaluation strategies including simulation, splitting, dy-
namic programming, and mathematical modeling. We also compare
the performance and durability of MLEC with other EC schemes
such as SLEC and LRC and show that MLEC can provide high dura-
bility with higher encoding throughput and less repair network
traffic over both SLEC and LRC.

CCS CONCEPTS
•Computer systems organization→Reliability;Redundancy;
n-tier architectures; • Computing methodologies→ Simula-
tion evaluation.

KEYWORDS
Data Centers, HPC Storage, Scalable Storage, Reliability, Data Pro-
tection, Erasure Coding, System-Design Tradeoffs

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00
https://doi.org/10.1145/3581784.3607072

ACM Reference Format:
Meng Wang, Jiajun Mao, Rajdeep Rana, John Bent, Serkay Olmez, Anjus
George, Garrett Wilson Ransom, Jun Li, and Haryadi S. Gunawi. 2023.
Design Considerations and Analysis of Multi-Level Erasure Coding in Large-
Scale Data Centers. In The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’23), November 12–17, 2023,
Denver, CO, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3581784.3607072

1 INTRODUCTION
Large-scale data centers store a huge amount of user data in a
massive number of disks and require redundancy approaches such
as erasure coding (EC) to protect them from disk failures [1–8].
The sheer size, scale, complexity, and layering of distributed mass-
capacity storage keep growing and have never stopped. Figure 1
shows that the number of disks managed in Backblaze and US DOE
laboratories keeps increasing and the per-disk capacity also keeps
growing for both max available capacity and average capacity of
sold disks. Such extreme scales lead to more frequent disk failures
and longer time to rebuild a failed disk.

For managing tens or hundreds of thousands of disks, the classi-
cal single-level erasure coding (SLEC) no longer scales and cannot
provide a good balance between minimizing repair overhead and
maximizing rack/enclosure-level failure tolerance. Multi-level era-
sure coding (MLEC), which performs EC at both network and local
levels, becomes a popular choice for several reasons. (a) MLEC
is a hybrid of the network- and local-level SLEC schemes, hence
gaining the benefits of the two worlds. Local SLEC only performs
EC inside a rack/enclosure and thus cannot tolerate rack/enclosure
failures [9–11]. Network SLEC tolerates rack failures but requires
cross-rack network traffic for repairing lost chunks [12–14]. MLEC,
on the other hand, can repair most disk failures locally without
interfering user network traffic while at the same time being able to
tolerate rack failures. (b) MLEC’s performance scales better. With
tens of thousands of disks, deploying more parity chunks and wider
stripes to achieve higher durability will lead to higher encoding

https://doi.org/10.1145/3581784.3607072
https://doi.org/10.1145/3581784.3607072
https://doi.org/10.1145/3581784.3607072

SC ’23, November 12–17, 2023, Denver, CO, USA M. Wang, J. Mao, R. Rana, J. Bent, S. Olmez, A. George, G. W. Ransom, J. Li, and H. S. Gunawi

 0

 50

 100

 150

 200

 250

 2010 2013 2016 2019 2022

D
is

k
s
 /

 S
y
s
te

m
 (

K
)

 Backblaze

35
72

107

162

202
 US DOE

10 20
36 47

(a) Disks per system

 0

 5

 10

 15

 20

 2010 2013 2016 2019 2022

C
a

p
a

c
it
y
 /

 H
D

D
 (

T
B

)

Max Available

2
4

8

12
14

18
20

Average Sold

1.3 2.2 3.6
5.7

8.9
12.3

(b) Capacity per disk

Figure 1: Storage scaling over the years.

computation overhead. However, the 2-level nature of MLEC can
provide high durability with less encoding overhead than SLEC. (c)
MLEC is stackable and easy to deploy/scale in practice. Since stor-
age vendors sell RBODs (reliable bunch of disks) with EC controllers
inside, larger-scale customers can build network-level EC on top
of the local RBODs. (d) MLEC is more configurable. Customers
can choose how many parities and what kind of chunk placement
scheme to use at each level that fit their goals and constraints.

MLEC has seen large deployments in the field, including in HPC
data centers in national laboratories [15], enterprise-grade stor-
age softwares [16], and commercial storage systems [17]. However,
based on literature study and personal communications, there is no
in-depth study of design considerations for MLEC at scale. Many re-
search questions remain unanswered. What are the possible chunk
placement schemes for MLEC at scale? What are their pros/cons
in terms of performance and durability? What are the types of fail-
ure modes an MLEC system can face? Can we introduce advanced
repair methods that are optimized for every specific scheme and
failure mode? What are the implementation requirements for ad-
vanced repairs? Though other works analyze hierarchical RAID for
small-scale systems [18–22], we have not seen any work answering
the questions above or studying design considerations of MLEC for
large-scale systems.

In this paper, we provide, to the best of our knowledge, the most
comprehensive design considerations and analysis of MLEC at scale
that addresses the questions above. More specifically, we present
the following contributions.

(1) We introduce the design space of MLEC in multiple dimen-
sions, including various code parameter selections, chunk
placement schemes, and various repair methods from a sim-
ple and practical one to a more optimized one that leverages
the multi-level EC but requires cross-level transparency.

(2) We quantify their performance (encoding throughput, repair
network traffic, repair time, etc.) and durability (under in-
dependent and correlated failures). We show which MLEC
schemes and repair methods can provide the best tolerance
against independent/correlated failures and reduce repair
network traffic by orders of magnitude.

(3) To achieve all of the above, we use various evaluation strate-
gies including simulation, splitting, dynamic programming,
and mathematical modeling. We build, to the best of our
knowledge, the first sophisticated MLEC simulator (in al-
most 13,000 lines of code (LOC)) that allows us to measure
MLEC performance and durability at scale (over 50,000 disks),
withmany capabilities such as simulating disk failures (based
on distributions, rules, or real traces), combining multi-level
clustered/declustered placements, expressing failure toler-
ance, and executing complex repairs.

XNetwork SLEC

a a1 a2

R1E1 R2E1 R3E1

a1 a2 a12

a12a1 a2

Local SLEC

a1 a2

R1E1

b

a1 a2

a1 a2 a12

a1 a2 a3 a4

Network MLEC

a1 a2

R1E1

a1 a2 a12

R2E1

a3 a4 a34

R3E1

aP
L

o
c

a
l M

L
E

C

a3 a4 a13 a24

a13 a24

c

d

e

D1 D2 D3 D4 D5 D6

b1 b2

Clustered Parity

Declustered Parity

Repair to spare disk

D
spare

b12

a1 a2 a12 a12
X

X

X

X

X

Parallel repair to spare space

D1 D2 D3 D4 D5 D6

Local Cp pool

Local Dp pool

Figure 2: SLEC vs. MLEC logical view (§2.1). The figures show
(a) a network SLEC, (b) a local SLEC, and (c) an MLEC. Light-colored
boxes (e.g., a1, a2) are data chunks and dark-colored boxes (e.g., a12,
a24) are parity chunks. “R” and “E” respectively denote racks and
enclosures. Figures (d) and (e) differentiates local clustered and declus-
tered parity placements.

(4) We also compare the performance and durability of MLEC
with other EC schemes such as SLEC and LRC [23] and show
that MLEC can provide high durability with higher encoding
throughput and less repair network traffic over both SLEC
and LRC.

Configuring or extending an MLEC design at extreme scales can
be costly without proper understanding of the implication of the
proposed changes. We hope our analysis (along with the simulation
code [24] and evaluation artifact [25] that we have released) will
enable engineers and operators of extreme-scale EC systems to
have a comprehensive knowledge of the (dis)advantages of various
MLEC schemes.

2 MLEC DESIGN
We begin by describing the MLEC design, starting from the logical
and physical views (§2.1-2.2) to the failure modes and possible
repair methods (§2.3-2.4). To ease readers in finding definitions and
descriptions, we use bold text for findings, the first mentions of
figure references, and important terms.

2.1 MLEC Basics and Logical View
We begin with showing the logical view of the MLEC architecture
by comparing it with basic SLEC architectures in Figure 2. For
simplicity, not all physical elements are shown yet. We use the
(k+p) notation to describe an SLEC setup with 𝑘 data and 𝑝 parity
chunks. For MLEC, we use the (𝑘𝑛+𝑝𝑛)/(𝑘𝑙+𝑝𝑙) notation where 𝑛
and 𝑙 respectively stand for “network” and “local.”

Network SLEC: Figure 2a shows a simple (2+1) network SLEC
with three enclosures. When user data arrive (a1 and a2), the
storage server builds the parity chunk (a12) and sends each of these
chunks to a separate rack, and in each rack the chunk might go to a
different enclosure (e.g., a1 might go to rack R1 enclosure E1, a2 to
R2E3, and a12 to R3E2. But for simplicity, a1, a2, a12 all go to E1 in
the figure). An enclosure is a collection of disks stored within the

Design Considerations and Analysis of
Multi-Level Erasure Coding in Large-Scale Data Centers SC ’23, November 12–17, 2023, Denver, CO, USA

same rack. A “disk” can be an HDD, SSD, or other types of drives.
Network-level SLEC can tolerate rack/enclosure-level failures but
requires cross-rack network traffic for every repair.

Local SLEC: Figure 2b shows a (2+1) local SLEC with one en-
closure. The storage server picks an enclosure and simply forwards
the entire user data stripe to the enclosure-level controller, which
then builds the parity chunk and writes all the chunks to different
disks in the enclosure. Local SLEC can tolerate disk failures but not
rack/enclosure-level failures.

MLEC: Figure 2c shows a (2+1)/(2+1)MLEC architecture, which
is a combination of network and local SLEC architectures. Note that
the 𝑘𝑛 and 𝑘𝑙 do not have to be the same, but we use 𝑘𝑛=𝑘𝑙=2 here
for simplicity. Upon receiving a full data stripe (four chunks, from
a1 to a4), the storage server splits it to two network data chunks
(a1a2 and a3a4) and build onenetwork parity chunk (a12a34). Note
here, a network-level chunk contains two local-level chunks. The
server then distributes them across different enclosures in separate
racks. Each enclosure takes the data and splits it to local data
chunks (e.g., a1a2 is split to a1 and a2 chunks), computes the local
parity chunk (e.g., a12 in R1E1), and sends them to three different
disks in the enclosure.

Overall, the local-level MLEC manages the local stripes (e.g.,
a1–a2–a12 is a local stripe with three local chunks). Likewise, the
network-level MLEC is responsible for managing the network
stripes where each network stripe contains multiple local stripes
(e.g., a1a2a12–a3a4a34–a13a24aP is a network stripe containing three
local stripes). aP is the parity of a13 and a24.

Clustered vs. declustered parity (Cp vs. Dp): Now let’s look
at the local placement, where one can deploy the conventional
clustered or declustered parity placement. In the clustered parity
(“Cp”) placement, every (k+p) disks will form a pool. In Figure 2d,
the 6 disks in one enclosure form two (2+1) local-Cp pools. Here,
a local stripe must go to a specific pool, i.e., a stripe either has no
chunk in the pool, or has all the chunks residing in the pool. When
a disk in a local-Cp pool fails, the local repairer reads from the 𝑘
(two) surviving disks to reconstruct the lost data and write to a
new spare disk. The rebuild time is bottlenecked both by the read
bandwidth of only the participating disks (two disks here) and by
the single disk’s write bandwidth (to the one spare disk).

In order to improve the rebuild rate, declustered parity (“Dp”)
placement was proposed. For brevity, we will not discuss the de-
tailed layouts, as they can be found in the literature [26–31]. How-
ever, the important part is that a local-Dp pool should have (much)
more than (k+p) disks. In Figure 2e, all the 6 disks in the enclosure
form only one local-Dp pool. Here, the data, parities, and spare
space are pseudorandomly spread (declustered) across all the disks.
When a disk fails, all the surviving disks in the large pool partici-
pate in both reading and writing which leads to faster repair rate.
Later on, the admin can bring in a new disk and rebalances the data
in the background.

Declustered parity placement can also be applied to network
SLEC. In network-Dp SLEC, the entire system is treated as a pool,
and each chunk in the stripe is placed pseudorandomly in a separate
rack. When a disk fails, all the surviving disks in the system can
participate in the repair, utilizing the network bandwidth of all the
racks in the system to speed up the repair.

a

E1 E1 E1

E2 E2 E2

C/C Scheme

Rack1

D1 D2 D3 D4 D5 D6 D1 D2 D3 D4 D5 D6 D1 D2 D3 D4 D5 D6

Rack2 Rack3

b

E1 E1 E1

E2 E2 E2

C/D Scheme

c

E1 E1 E1

E2 E2 E2

D/C Scheme

d

E1 E1 E1

E2 E2 E2

D/D Scheme

a1 a2 a12

b1 b2 b12

a4 a3 a34 a13 aP a24

b34 b4 b3 b13 b24 bP

a2 a12 a1

b2 b1 b12

a3 a4 a34

b3 b4 b34

a24 a13 aP

b13 bP b24

a13 a24 aP

a3 a4 a34 a1 a2 a12b1 b2 b12

b3 b34 b4 b13 b24 bP

a24 aP a13

b1 b2 b34 a4 a34 a3

b3 b4 b34 b13 bPb24

a2 a1 a12

Figure 3: Four MLEC schemes and their physical views (§2.2).
The figure shows three racks, each with two enclosures, each with six
disks. For simplicity, we only show chunk per disk (no disk cylinders);
e.g., a1 chunk is in Rack R1, Enclosure E1, Disk D1.

2.2 MLEC Schemes and Physical View
Given the two levels (network and local) and the two chunk/parity
placements (clustered and declustered), we can permute them into
four basic placement schemes (or “MLEC schemes” for short). Below
we define each of them, using Figure 3 to illustrate the physical
views. Again, for simplicity, we use a (2+1)/(2+1) MLEC, i.e., 𝑘𝑛=2,
𝑝𝑛=1, 𝑘𝑙=2, and 𝑘𝑙=1. Hence, we show 3 racks (R1to R3), where each
rack contains 2 enclosures (E1 and E2) and each enclosure contains
6 disks (D1 to D6).

Clustered-clustered (𝐶/𝐶) scheme: In Figure 3a, this simplest
scheme performs clustered parity at both network and local levels. A
(2+1) local stripe is mapped to a local-Cp pool, containing adjacent
𝑘𝑙+𝑝𝑙 disks; for example, a1a2a12 and b1b2b12 are mapped to two
different local pools, each with three consecutive disks. Moving up
to the network level, every 𝑘𝑛+𝑝𝑛 enclosures at the same position
across the three racks form a network pool for (2+1) network
stripes. For example, for the network stripe a1. . . aP, they all have to
reside in the same local-Cp pool position in the three E1enclosures
across the three racks.

Clustered-declustered (𝐶/𝐷) scheme: In Figure 3b, this scheme
performs a network clustered and local declustered placements.
Starting from the top, all the data and parity chunks of a net-
work stripe still have to reside within the same local-Dp pool posi-
tion within the same enclosure position in each rack. For example,
a1. . . aP are mapped to the first local-Dp pool in enclosure E1 across
the three racks. Locally, as explained before, the local-Dp pool has
6 disks. The chunks of a local stripe are pseudorandomly spread
across the 6 disks (e.g., a2, a1, and a12 chunks are mapped to disks
D1, D3, and D4, respectively), but the chunks in the stripe cannot
go to the same disk (to tolerate disk-level failure).

Declustere-clustered (𝐷/𝐶) scheme: Reversing the previous
scheme, now we have the network level performing declustered

SC ’23, November 12–17, 2023, Denver, CO, USA M. Wang, J. Mao, R. Rana, J. Bent, S. Olmez, A. George, G. W. Ransom, J. Li, and H. S. Gunawi

Local level failures
• A failed chunk: A lost (but may be recoverable) chunk due to a
disk failure.
• An affected local stripe: a local stripe with any number of
chunk failures.
• A locally-recoverable local stripe: A local stripe containing 1
to 𝑝𝑙 failed chunks.
•A lost local stripe: A local stripe containing 𝑝𝑙+1 or more failed
chunks but may still be recoverable from the network level.
• A catastrophic (locally-unrecoverable) local pool: A local
pool with 1 or more lost local stripes, e.g., in (10+2)/(17+3) MLEC,
a local pool with 4 disk failures is not recoverable locally and
requires network repair.

Network level failures
• An affected network stripe: a network-wide stripe with any
number of lost local stripes.
• A recoverable network stripe: A network stripe containing 1
to 𝑝𝑛 lost local stripes.
• A lost network stripe (a data loss): A network stripe with
𝑝𝑛+1 or more lost local stripes.

Table 1: MLEC failure modes (§2.3).

parity. That is, the local-stripes of a network stripe will be pseudo-
randomly spread across the enclosures within the network pool,
but they cannot go to the same rack (to tolerate rack-level failure).
For simplicity, Figure 3c shows a network pool containing only
six enclosures across the three racks. The network stripe a1. . . aP is
split to three local stripes stored in different enclosure positions in
the three racks (e.g., the local stripe a1a2a12 is mapped to enclosure
E2 in rack R3). At the local level, 𝐷/𝐶 follows 𝐶/𝐶, i.e., a local stripe
goes to a local-Cp pool.

Declustered-declusted (𝐷/𝐷) scheme: Finally, in this last scheme,
we have declustered placements in both network and local levels.
For example, in Figure 3d, just like in the previous figure/scheme,
the local stripe a1a2a12 is mapped to enclosure E2 in rack R3, but
now the chunks of this local stripe are scattered across the 6 disks
in the local-Dp pool.

In large-scale deployments, in network clustered (𝐶/∗)1 schemes,
every 𝑘𝑛+𝑝𝑛 inter-rack local pools in the same enclosure position
will form a network pool, hence the total rack count must be a
multiple of 𝑘𝑛+𝑝𝑛 . However, in network declustered (𝐷/∗) schemes,
a network pool usually contains much more than but does not have
to be a multiple of 𝑘𝑛+𝑝𝑛 racks. Likewise, in local clustered (∗/𝐶)
schemes, a local pool contains 𝑘𝑙+𝑝𝑙 disks, and hence an enclosure
must have a multiple of 𝑘𝑙+𝑝𝑙 disks. However, in local declustered
(∗/𝐷) schemes, a local pool usually contains much more than but
does not have to be a multiple of 𝑘𝑙+𝑝𝑙 disks.

2.3 Failure Modes
Given the more complex chunk placements, MLEC can face vari-
ous failure modes, as listed in Table 1, which we will use heavily
throughout the paper. With the listed definitions, we now can de-
rive the data loss conditions, which vary across the MLEC schemes.

1∗ is a don’t-care symbol.

A data loss is defined as the loss of a network stripe, more specif-
ically the loss of 𝑝𝑛+1 local stripes. In network-Cp (𝐶/∗) schemes,
only 𝑝𝑛+1 catastrophic local pools in the same network pool can
cause a network stripe to have 𝑝𝑛+1 lost local stripes. Since a 𝐶/∗
system can have many network-level pools, 𝑝𝑛+1 catastrophic local
pools that are scattered in multiple network-level pools will not
cause data loss. In network-Dp (𝐷/∗) schemes, since there is only
one network pool in the system, any arbitrary 𝑝𝑛+1 catastrophic
local pools may lead to a lost network stripe with 𝑝𝑛+1 lost local
stripes. However, the probability for such a lost network stripe
to happen can be extremely low, depending on the actual chunk
placement (which is pseudorandom) in network-Dp (𝐷/∗) schemes.

2.4 Repair Methods
When it comes to repair, the network pool level is more important.
Repairing locally-recoverable pools is straightforward (similar to
SLEC repairs in Figures 2d-e). The challenge is to recover2 a cata-
strophic (locally-unrecoverable) local pool (defined in Table
1). For this, we introduce four possible local-pool repair methods
applicable to all the MLEC schemes, as illustrated in Figure 4, from
the simple to optimum ones, along with their pros and cons.

Repair All (RALL): In Figure 4a, the failures of disks D1 and
D3 in rack R1 caused a catastrophic local pool failure, thus chunks
a1 and a2 need to be reconstructed. “Repair All” (RALL) is a method
that simply rebuilds the entire local pool (e.g., disks D1 to D6 in rack
R1) from the other healthy local pools in other racks (R2 and R3)
via a network-level parity calculation. As the downside, it unneces-
sarily leads to a much higher amount of network traffic. However,
RALL is common in deployment (e.g., in MarFS [15]) because it is
considerably the easiest to implement. That is, the network repairer
does not need to know the layouts of the local part of theMLEC. The
network-level sysadmins can use black-box/off-the-shelf RBODs
(e.g., CORVAULT [32], ZFS pools [33], and PowerEdge RAID [34]).

Repair Failed Chunks Only (RFCO): Unlike RALL, RFCO only
rebuilds the failed chunks. For example, in Figure 4b, a1 in rack
R1 is rebuilt by network parity calculation on a3 and a13 from the
other two racks (and similarly for a2). By doing this, RFCO reduces
the network repair traffic. Although it seems simple, RFCO is less
straightforward to implement. It requires the local/enclosure-level
repairer to report which chunks have failed and coordinates with
the network-level repairer. This is one reason why repair methods
like RFCO are not supported by many existing RAID systems. For
example, ZFS [33] handles its own block device mappings internally,
and does not readily expose the mapping information. Therefore,
when a ZFS local pool fails, it is often impossible for the network-
level repairer to know which chunks have failed. Thus, although
RFCO is more efficient than RALL, RFCO requires a proper API design
and metadata management across the local and network levels.

Repair Hybrid (RHYB): RHYB repairs the failed chunks in a
hybrid way using both network and local repairs. To show this
optimization, Figure 4c shows a slightly different layout, where
two failed chunks a2 and b2 are stored in the same failed disk D3
in rack R1(plus another failed chunk a1 in disk D1). Here, RHYB
basically analyzes every failed chunk and asks whether a network
repair is needed or not. The loss of a1 and a2 form a lost local stripe,

2We use recover/repair/rebuild/reconstruct interchangeably.

Design Considerations and Analysis of
Multi-Level Erasure Coding in Large-Scale Data Centers SC ’23, November 12–17, 2023, Denver, CO, USA

a

R
A
L
L

Rack1

D1 D2 D3 D4 D5 D6 D1 D2 D3 D4 D5 D6 D1 D2 D3 D4 D5 D6

Rack2 Rack3

b

c

d

a1

a2 a12b1b2 b12 a4a3 a34 a13 aPa24b34b4b3 b13 b24 bPa1

a2 a12b1b2 b12

R
F
C
O

a1 a2 a12b1b2 b12 a34 aPb34b4b3 b13 b24 bPa3 a4 a13 a24

a1 a2 a12

b1 b12

a34 aPb34b4b3 b13 b24 bPa3 a4 a13 a24

a2

a1

b2

a1 a2

b2 + Local repair

 network repair same as part (b)

a1 a2 a12 a34 aPb34b4b3 b13 b24 bPa3 a4 a13 a24

a1

a2

Huge network repair

Small network repair

(1) network repair

(2) local repair

R
H
Y
B

R
M
I
N

Figure 4: Four repair methods, RALL to RMIN (§2.4). For sim-
plicity, we only show a (2+1)/(2+1) 𝐶/𝐷 MLEC scheme. Also, not all
the figures use the same chunk locations.

hence they cannot be repaired locally and require the network repair.
However, for b2, it can be rebuilt locally because b1 and b12 are still
available in the surviving disks (i.e., a locally-recoverable stripe). As
we measure and explain later in Section 4.2, RHYB works well for
local-Dp (∗/𝐷) schemes.

RepairMinimum (RMIN): Taking the insight from the previous
method, this last method incurs the minimum amount of network
repair traffic. It does so in two stages. First, it finds all the lost
local stripes and reads the minimum number of chunks over the
network such that the stripes transition to locally-recoverable local
stripe. Second, all the locally-recoverable local stripes can be rebuilt
locally. For example in Figure 4d, the lost local stripe a1a2a12 is
partially repaired by rebuilding a1 first (by xor-ing a3 and a13) over
the network. Now, a2 is still lost but can be rebuilt locally by xor-ing
a12 and the recently-rebuilt a1.

3 METHODOLOGY
To perform in-depth analysis for various MLEC schemes and repair
methods, we use the four following evaluation strategies.

Simulation: To quantify performance and reliability, one can
start with a mathematical model. However, our work introduces
complex repair methods that are hard to model. For this reason, we
build a sophisticated MLEC simulator (in almost 13 kLOC) with
many capabilities such as simulating disk failures (based on distri-
butions, rules, or real traces), combining multi-level (de)clustered
placements, expressing failure tolerance, and executing complex
repairs. We use this simulator to measure repair traffic, repair time,
and system durability in Sections 4.1.2, 4.1.3, 4.2.1, 4.2.2, 5.1.4, 5.2.4.

Splitting (multi-stage simulation): A uniqueness of our work
is the focus on extreme-scale deployments (e.g., >10k disks), which
require protection from a large number of parities. However, to
estimate high durability, a simulation must run a large number
of iterations to capture even one system data loss event (it will
take years even with a 200-core simulation). To reach rare events

faster, we adopt the splitting method [35, 36]. First, we simulate
the durability of a single local pool using regular simulation and
collect local pool failure samples. Second, we systematically inject
catastrophic local pool failures from the samples at MLEC level. We
use this to evaluate high durability in Sections 4.2.3, 5.1.2, and 5.2.2.

Dynamic programming:While splitting is efficient to measure
high durability under independent failures, it is hard to do the same
under correlated failure bursts. This is because each local pool’s
durability is not deterministic but correlated to other local pools’
durability. Thus, we use dynamic programming, specifically by
using it to count the number of all the possible disk failure layouts
under a certain correlated failure burst scenario, and then count
how many such failure layouts could cause a data loss in MLEC. We
use this strategy for measuring the probability of data loss (PDL)
under correlated failure bursts in Sections 4.1.1, 5.1.3 and 5.2.3.

Mathematical model: For thoroughness, we also build a math-
ematical model to verify our simulation strategies, but we can only
do so for the simplest repair method (RALL). We choose to use
Markov Chain model as it’s commonly used to analyze durability
of SLEC systems [37–39]. To model the MLEC system, we first took
existing SLEC durability models that use Markov chain models and
probability theory [37–40], and then we iteratively apply the model
to network-level MLEC by treating a local pool like a disk.

(Setup):We use the following setups, which mimic real large-
scale deployments [15, 41, 42]. Datacenter setup:We simulate 57,600
disks across 60 racks, with 8 enclosures per rack, 120 disks per
enclosure, 20 TB per disk, and a chunk size of 128 KB.MLEC config-
uration:We use a (10+2)/(17+3)MLEC. For ∗/𝐶 schemes, a local-CP
pool contains exactly 20 disks. For ∗/𝐷 schemes, given the local
declustered approach, a local-DP pool contains 120 disks. Available
repair bandwidth: The raw bandwidth is set to be 200 MB/s for per-
disk I/Os and 10 Gbps per rack for cross-rack network, respectively.
However, for repairs, disk and network traffics are both capped
at 20% of their respective raw bandwidth. Thus, we use the term
“available repair bandwidth” to reflect the resulting data repair band-
width that is subject to this policy. Fault simulation: To simulate a
catastrophic local pool failure, we generate 𝑝𝑙+1 disk failures simul-
taneously. However, to measure long-term durability (e.g., over one
year), we generate random disk failures independently following
an exponential distribution with an annual failure rate (AFR) of 1%.
Failure detection time:We also follow previous works [23, 43] that
use 30 minutes to detect each failure and trigger the repair.

4 MLEC ANALYSIS
We now present an in-depth analysis of performance and durability
implications of various MLEC schemes in Section 4.1 and repair
methods in Section 4.2.

4.1 Analysis of MLEC Schemes
First, we analyze the four MLEC schemes (𝐶/𝐶 to 𝐷/𝐷), particularly
the impact of their chunk/parity placements on the probability of
data loss under correlated failures (§4.1.1), repair speed (§4.1.2), and
probability of catastrophic local failure (§4.1.3).

4.1.1 PDL under Correlated Failures. We begin with analyz-
ing the impact of different MLEC schemes on the probability of

SC ’23, November 12–17, 2023, Denver, CO, USA M. Wang, J. Mao, R. Rana, J. Bent, S. Olmez, A. George, G. W. Ransom, J. Li, and H. S. Gunawi

0 20 40 60

0

20

40

60

#
 f

ai
le

d
 d

is
k

s

0 e
−6

e
−4

e
−2

1

F#3

(a) C/C

0 20 40 60
affected

0

20

40

60
0 e

−6
e

−4
e

−2
1

F#1

F#5

(b) C/D

0 20 40 60
racks

0

20

40

60
0 e

−6
e

−4
e

−2
1

F#2

F#6

(c) D/C

0 20 40 60

0

20

40

60
0 e

−6
e

−4
e

−2
1

F#4

F#7

(d) D/D

Figure 5: PDL under correlated failures (§4.1.1). The square
color represents the PDL of the MLEC scheme when a total of 𝑦 simul-
taneous disk failures are randomly scattered across 𝑥 racks.

data loss (PDL) under a wide range of failure burst topologies, from
scattered disk failures across many racks to highly correlated fail-
ures localized in a single rack. PDL is defined as the probability
that a storage system unrecoverably loses any data, and failure
bursts refer to failures that are temporally correlated and happen
concurrently at the same time or within a small time window [37].

Figure 5 shows heatmaps of the PDL, where greenish squares
(near the value of 0) represent high durability and reddish squares
(near the value of 1) represent low durability. We vary the number
of disk failures (in the 𝑦-axis) and spread them across one or more
racks (in the 𝑥-axis). For example, {𝑦 = 60, 𝑥 = 60} implies that
every rack has a single disk failure (i.e., scattered failures), while
{𝑦 = 60, 𝑥 = 1} implies that only one rack experiences 60 disk
failures. The four subfigures show the impact of these various
failures on 𝐶/𝐶, 𝐶/𝐷, 𝐷/𝐶, and 𝐷/𝐷 schemes, respectively.

Below we present our findings “F#1-7” in Figure 5. Findings #1-4
are applicable to all four schemes, but for presentation clarity, we
spread them across the four subfigures. Findings #5-7, however, are
unique to the labeled schemes, respectively. We believe Findings
#2-#7 were never reported before.

Finding #1: When a failure burst happens in at least 𝑝𝑛+1 racks,
the more failed disks in those racks, the higher the PDL. For example,
in the highlighted vertical area in Figure 5b, 𝑝𝑛 is 2, but we have
3 racks (𝑥 = 3) experiencing failures. If the number of failed disks
goes up (in the 𝑦-axis), it will cause more local stripe failures. As a
result, the PDL will go up (greenish to reddish squares), and data
loss will happen if 𝑝𝑛+1 or more local stripe failures happen within
a network stripe (as the network stripe cannot recover).

Finding #2: MLEC is more robust to scattered failures. As high-
lighted in the horizontal area in Figure 5c, when a fixed number of
disk failures happen concurrently, the more racks they are scattered
to, the lower the PDL is. This is because each rack is more likely to
have fewer disk failures, which is more tolerable by the local-level
EC of MLEC.

Finding #3: Full local failures can be recovered by the network-
level EC up to some limit. In Figure 5a, zero data loss can be guaran-
teed (PDL = 0) when the number of affected racks is smaller than
or equal to 2. This is because a network stripe can survive any 𝑝𝑛
rack failures, and 𝑝𝑛 is 2 here. The PDL is also 0 when no more than
𝑥+8 disk failures are scattered in 𝑥 racks. This is because a local
(17+3) stripe can tolerate any 3 failures. Thus, 𝑥+8 disk failures in
𝑥 racks can cause at most 2 lost local stripes in the same network
stripe, which can be tolerated by the network-level (10+2) EC.

Finding #4:MLEC is susceptible to data loss under highly localized
failure bursts. Deriving from previous findings, MLEC suffers the

 0

 50

 100

 150

C
/C

C
/D

D
/C

D
/D

F#1

R
e

b
u

ild
 t

im
e

 (
H

o
u

rs
)

(a) Single disk failure

0

1K

2K

3K

C
/C

C
/D

D
/C

D
/D

F#2
F#3

F#4

R
e

b
u

ild
 t

im
e

 (
H

o
u

rs
)

(b) Catastrophic local failure

Figure 6: Repair time (§4.1.2). Under (a) a single disk failure and
(b) a catastrophic local failure.

Single disk failure Local pool failure
MLEC Disk Avail. Repair Pool Avail. Repair
Schemes size (TB) BW (MB/s) size (TB) BW (MB/s)

𝐶/𝐶 20 40 400 250
𝐶/𝐷 20 264 2400 250
𝐷/𝐶 20 40 400 1363
𝐷/𝐷 20 264 2400 1363

Table 2: Repair size and available repair bandwidth (§4.1.2).
Under (a) single disk failure and (b) catastrophic local failure.

most when failures bursts happen in exactly 𝑝𝑛+1 racks, depicted in
Figure 5d. In all the figures, we can also see that PDL is the highest
when 60 disk failures happen concurrently in 3 racks.

Finding #5: 𝐶/𝐷 has lower tolerance than 𝐶/𝐶 under more localized
failure bursts. By comparing the area pointed to by Finding #5 in
Figure 5b and the same area in Figure 5a, we can see that 𝐶/𝐶
has better tolerance than 𝐶/𝐷 when failure bursts happen in more
than 𝑝𝑛 racks. This is because a local-Dp pool can only tolerate 𝑝𝑙
arbitrary concurrent disk failures out of many (let’s say 𝐷𝑙) disks.
On the other hand, a local-Cp pool can tolerate up to 𝑝𝑙 disk failures
out of (𝑘𝑙+𝑝𝑙) disks, where usually 𝐷𝑙>𝑘𝑙+𝑝𝑙 . Therefore, when the
same number of random disks in a rack fail concurrently, it’s more
possible to cause local pool failures in 𝐶/𝐷 than in 𝐶/𝐶, and more
frequent local pool failures in turn make system-wide data loss
more likely.

Finding #6: Likewise, 𝐷/𝐶 has lower tolerance than 𝐶/𝐶. Similar to
above, when 𝑝𝑛+1 or more racks have failures, 𝐷/𝐶 performs worse
than 𝐶/𝐶, yet for a different reason. Whenever more than 𝑝𝑛 racks
have local pool failures, no matter which local pool in the rack fails,
𝐷/𝐶 can lose data. On the other hand, 𝐶/𝐶 experiences data loss only
when more than 𝑝𝑛 local pools in the same network-level pool fail.

Finding #7: 𝐷/𝐷 has the worst data durability under failure bursts.
In Figure 5, 𝐷/𝐷 has the most reddish squares (higher PDL) among
all the schemes. This is because the local-Dp scheme makes local
pool failures more likely, and local pool failures in the network-Dp
scheme are more likely to cause data loss. Even when failures are
roughly scattered, unlike other schemes, 𝐷/𝐷 has a lower chance
of survival, because its local-Dp pools are more possible to fail
compared to local-Cp pools in 𝐶/𝐶 and 𝐷/𝐶. Furthermore, 𝐷/𝐷 can
lose data when any arbitrary 𝑝𝑛+1 local pools in separate racks fail,
while 𝐶/𝐶 and 𝐶/𝐷 only lose data when 𝑝𝑛+1 local pools in the same
network-level pool fail, which is less likely to happen.

In conclusion, different MLEC chunk placement schemes provide
different tolerance against correlated failure bursts. Among them,
𝐶/𝐶 performs the best while 𝐷/𝐷 has the largest probability of data
loss. However, 𝐶/𝐶’s repair rate unfortunately is not as fast as the
other schemes, as we will dissect in the next section.

Design Considerations and Analysis of
Multi-Level Erasure Coding in Large-Scale Data Centers SC ’23, November 12–17, 2023, Denver, CO, USA

4.1.2 Repair Speed. We now analyze how long data repair will
take under various MLEC schemes. Specifically, we analyze the
time of repairing (a) a single disk and (b) a catastrophic local failure.
This section starts with the simplest method, Repair-All (RALL), but
later Section 4.2 uses all the repair methods.

Figure 6 shows the rebuild time of the four MLEC schemes
under both failure conditions. To explain the rebuild time in the
figure, Table 2 provides further information on the amount of data
to rebuild and the available repair bandwidth, which also depends
on how many disks/local pools/racks participate in the repair as
explained in earlier in the “RALL” paragraph of Section 2.4. We now
elaborate findings “F#1-4” in Figure 6.

Finding #1: In repairing a single disk failure, local declustered
placement in 𝐶/𝐷 and 𝐷/𝐷 makes rebuilding fast. Figure 6a shows
that 𝐶/𝐷 and 𝐷/𝐷 are 6x faster compared to 𝐶/𝐶 and 𝐷/𝐶. This is
because, when a disk in a 120-disk local-Dp pool fails, the local
repairer can in parallel read the healthy chunks from and write
the reconstructed chunks to spare spaces on all the 119 surviving
local disks. On the other hand, the local-Cp repairer reads from 19
surviving disks and rebuilds to only 1 spare disk. Since it only has
at most 20 disks to participate in the local repair, its available repair
bandwidth is lower. In Table 2, the single disk repair bandwidth in
𝐶/𝐶 and 𝐷/𝐶 is around 6x lower than that of 𝐶/𝐷 and 𝐷/𝐷.

Finding #2: In repairing a catastrophic local failure, 𝐶/𝐷 takes
the longest time due to its larger local pool size.While in Figure 6a,
𝐶/𝐷 is faster than 𝐶/𝐶 in rebuilding a single disk failure, it is the
contrary under a catastrophic local failure, as shown in Figure 6b.
This is because 𝐶/𝐷 has a local-Dp pool whose size is much larger
than that of a local-Cp pool, leading to more data to reconstruct
across the network with limited network bandwidth. As detailed in
Table 2, the local-Dp (∗/𝐷) pool size is 2400 TB while the local-Cp
(∗/𝐶) pool size is only 400 TB.

Finding #3: In repairing a catastrophic local failure, 𝐷/𝐶 is the
fastest scheme. The speed-up comes from the network-level declus-
tered chunk placement. When reconstructing the target local pool,
the repairer needs to read chunks from other local pools. Thanks to
the network-level declustering, the chunks are spread across all the
other 59 racks and the rebuilt data can be written to spare spaces
in all the 60 racks, including the rack that contains the failed local
pool. This in turn gives a 5x repair rate compared to 𝐶/𝐶, which
has only 12 (from 10+2) racks participating in the repair at most.
As shown in Table 2, 𝐶/𝐶’s local pool repair bandwidth is 250 MB/s
while 𝐷/𝐶’s can be as high as 1,363 MB/s.

Finding #4: 𝐷/𝐷 is faster than𝐶/𝐷, but slower than 𝐷/𝐶 and slightly
slower than𝐶/𝐶. Still in Figure 6b, compared to𝐶/𝐷 (the slowest of all),
𝐷/𝐷 is around 5x faster due to the network declustering. However,
with its local pool that is 6x larger in size compared to that of
𝐷/𝐶, 𝐷/𝐷 is around 6x slower than 𝐷/𝐶. As a result, 𝐷/𝐷 takes a bit
longer than 𝐶/𝐶 as the repair overhead caused by the large local-Dp
pool dominates here. However, in a cluster with more racks and
smaller local-Dp pool size, or in a cluster with “unlimited” network
bandwidth, 𝐷/𝐷 could be faster than 𝐶/𝐶 in repairing a catastrophic
local pool. This is because 𝐷/𝐷 theoretically can read from and write
to all local pools.

In conclusion, under a single disk failure, 𝐶/𝐷 and 𝐷/𝐷 have the
fastest repair rate, but 𝐷/𝐶 is the fastest under a catastrophic local
failure. However, we emphasize the tradeoffs again that all these

speed-ups are obtained at the cost of a higher probability of data
loss against correlated failure bursts (as explained in Section 4.1.1
where 𝐶/𝐶 has the lowest PDL). We also have shown other tradeoffs
where single disk repair is faster (e.g., 𝐶/𝐷 is faster than 𝐶/𝐶 in Figure
6a) but at the cost of slower local pool repair (e.g., 𝐶/𝐷 is slower
than 𝐶/𝐶 in Figure 6b).

4.1.3 Local Failure Probability. Prior sections have established
that a catastrophic local pool failure is an Achilles’ heel of MLEC
because it will lead to a huge amount of network traffic with limited
available bandwidth. Even worse, when 𝑝𝑛+1 catastrophic local
failures happen concurrently, the system will lose data. Thus, we
now ask what the probability of catastrophic local failure is in
different MLEC schemes.

Figure 7 shows that fortunately the

C
/C

C
/D

D
/C

D
/D

10
−9

10
−8

10
−7

10
−6

10
−5

P
ro

b
 o

f
c
a
ta

s
 l

o
c
a
l

fa
il

u
re

Figure 7: Prob. of cata-
strophic local failure.

probability of the catastrophic local fail-
ure is low in all MLEC schemes. For
example, the probability with 𝐶/𝐶 and
𝐷/𝐶 is lower than 0.001% per year. Even
better, the probability is almost 0.00001%
with 𝐶/𝐷 and 𝐷/𝐷. There are two main
reasons why the latter is better by or-
ders of magnitude. First, a local-Dp
pool has higher durability than a local-Cp pool. This is not only
because the local-Dp pool has a higher disk repair rate, but also
because it has less high-priority stripes (i.e. stripes that have multi-
ple failed chunks), which can be prioritized and repaired quickly.
Accordingly, a local-Dp pool is more durable in our setup. Second,
since the local-Dp pool size (120) is larger than the local-Cp pool
size (20), the system has fewer local-Dp pools. Thus, the probability
of an arbitrary local-Dp pool failing is lower.

4.2 Analysis of Repair Methods
Previous section brings the good news that the probability of the
catastrophic local failure is low in general. However, as alluded to
in Section 4.1.2, the repair will take a large amount of time under a
straightforward repair method, RALL. Thus, in the following sec-
tions, we extend the evaluation to include RFCO, RHYB and RMIN’s
performance in repairing a catastrophic local pool failure.

4.2.1 Cross-Rack Repair Traffic. We begin with quantifying
the cross-rack network traffic of the four repair methods (RALL
to RMIN) in all the four MLEC schemes (𝐶/𝐶 to 𝐷/𝐷), as shown in
Figure 4.2.1 with the findings F#1-4 described below.

Finding #1: RALL is the simplest to implement but results in the
most network traffic. As elaborated in Section 2.4, RALL does not
require the network-level and local-level repairers to be aware
of each other, and hence simple to implement. As an implication,
however, RALL needs to repair the entire local pool, as opposed
to just the failed data in the local pool, which in turn leads to
unnecessary work. RALL also results in much more network traffic
in local-Dp (∗/𝐷) than in local-Cp (∗/𝐶) schemes (26,400 vs. 4400 TBs
in the figure). This is because local-Dp has a larger local pool to
reconstruct (120 disks) than local-Cp (20 disks).

Finding #2: RFCO significantly improves upon RALL. This is be-
cause, instead of repairing the entire pool, RFCO only repairs the
failed chunks. The reduction is more apparent for local-Dp (∗/𝐷)

SC ’23, November 12–17, 2023, Denver, CO, USA M. Wang, J. Mao, R. Rana, J. Bent, S. Olmez, A. George, G. W. Ransom, J. Li, and H. S. Gunawi

27000
F#1

F#2

RALL RFCO RHYB RMIN

C/C C/D D/C D/D
0

1000

2000

3000

4000

C
ro

ss
-r

ac
k

 T
ra

ff
ic

 (
T

B
)

3.1 0.8 3.1 0.8

F#4 F#3

Figure 8: Cross-rack network traffic (§4.2.1). The figure shows
the cross-rack traffic (in TB) generated by the four different repair
methods (RALL to RMIN) on four MLEC schemes.

2800

RALL-N

RFCO-N

RHYB-N

RMIN-N

RHYB-L

RMIN-L

C/C C/D D/C D/D
0

200

400

600

800

C
at

as
 R

ep
ai

r
ti

m
e

(h
o
u
rs

)

F#1

F#2 F#3

Figure 9: Repair time (§4.2.2). The figure shows the network-level
(-N) and local (-L) repair time with solid and striped bars, respectively.
When the solid bars are not visible, the numbers are very small.

schemes due to larger local pool sizes (e.g., from 26,400 to 880 TB
in 𝐶/𝐷). As alluded to in Section 2.4, an MLEC deployment with
two different vendors might need to implement some APIs to pass
failure information across the two layers.

Finding #3: RHYB (a hybrid local and network repair) further
reduces cross-rack repair traffic for local-Dp (∗/𝐷) schemes. For𝐶/𝐷 and
𝐷/𝐷, RHYB only transfers 3.1 TB, much fewer than 880 TB in RFCO.
This is because in a local-Dp pool, when 𝑝𝑙+1 disks fail, only a small
fraction of affected local stripes are lost local stripes which require
network-level repair, and other affected local stripes that have less
than 𝑝𝑙+1 chunk failures can be repaired locally. For local-Cp (∗/𝐶)
schemes, the figure shows that RHYB does not give advantage over
RFCO, because here we inject all the 𝑝𝑙+1 disk failures at the same
time. Later in Section 4.2.3, we simulate different timings of failures.

Finding #4: RMIN provides the minimum cross-rack traffic among
the four repair methods. For all MLEC schemes, RMIN reduces net-
work traffic by 4x or more compared to RHYB, thanks to the oppor-
tunistic 2-stage method in RMIN. In this case, for example, instead
of repairing all 4 failed chunks from the network level, RMIN only
repairs one failed chunk from each 4-chunk-failure stripe (the first
stage) and after that rebuilds the three remaining failed chunks
locally (the second stage).

4.2.2 Repair Time. As the last section focuses on the network
traffic size, we now measure the repair time and describe findings
F#1-3 in Figure 9. The first two repair methods, RALL and RFCO,
only employ network-level repair, while the last two, RHYB and
RMIN, leverage local repairs, depending on the MLEC schemes, as
we explain below.

Finding #1: RALL imposes the longest time and RFCO reduces the
network-level repair time by 5-30x. RALL reconstructs the entire local
pool, leading to a slow repair (with network throttling) in all the
MLEC schemes. However, RFCO only reconstructs the 4 failed disks,
resulting in much faster repair time.

Finding #2: RHYB reduces network repair time, but induces local
repair time. This is true for 𝐶/𝐷 and 𝐷/𝐷, wherein after the affected

stripes are partially reconstructed via network repair, the local pool
exits the catastrophic state and can be repaired locally. The local
repair however can only read from the disks in the local pool (i.e.,
less parallelism compared to reading from network-wide disks in
other racks). For example, on 𝐶/𝐷, RHYB takes a similar amount of
time as RFCO to fully recover the data.

Finding #3:While RMIN transfers the minimum amount of data
over the network, it can take even longer to repair the local pool. In
all the MLEC schemes, as RMIN quickly repairs a less amount of
data from the network level, it makes the failed local pool exit the
catastrophic state faster, but could take longer time to fully repair all
the failed disks. We would like to note that although the total repair
time is longer due to local repair, RMIN reduces network contention
for foreground I/Os and improves the durability of the system
(since the network-level EC is able to tolerate more catastrophic
local failures after the fast network-level repair).

4.2.3 Data Durability. Continuing what we built in the last
section, we now analyze how different repair time from different
methods would affect long-term data durability, as shown in Fig-
ure 10 along with findings F#1-4. Data durability in one year is
measured in the number of nines which is defined as − log10 (PDL),
e.g., 99.999% durability means 5 nines. In addition to the basic se-
tups (§3), we also prioritize repairing local stripes with more failed
chunks in local-Dp (∗/𝐷) schemes, and network stripes with more
affected local stripes in network-Dp (𝐷/∗) schemes.

Finding #1: Compared to RALL, RFCO increases the durability
by 0.9-6.6 nines. RALL’s slow repair impacts durability, but RFCO’s
faster repair increases the durability. The increase is as high as 6.6
nines in 𝐷/𝐷 due to two reasons. First, the repair time reduction is
large in 𝐷/𝐷 (Section 4.2.2). Second, when 𝐷/𝐷 has 𝑝𝑛+1 catastrophic
local pools, it might not have any lost network stripe because each
catastrophic local-Dp pool only has a small number of lost local
stripes, and the probability of a lost network stripe with 𝑝𝑛+1 lost
local stripes is as low as 0.03% due to the network-Dp placement.
However, RALL is not able to detect this information as it treats the
entire local-Dp pool as lost. But again in RFCO, the network repairer
has the knowledge of which exact chunks are lost, and hence it can
tolerate the cases where there are 𝑝𝑛+1 catastrophic local pools but
no lost network stripes.

Finding #2: RHYB further increases the durability by 0.6-4.1 nines.
This is because RHYB’s faster repair only rebuilds the lost local
stripes. The increase is more apparent in 𝐶/𝐷 and 𝐷/𝐷 because each
local-Dp pool only has a small portion of lost local stripes (due
to the declustered placement). Note that RHYB also increases the
durability of local-Cp (∗/𝐶) schemes although RHYB did not show
repair traffic/time reduction in earlier sections. This is because
previously we injected all the 𝑝𝑙+1 disk failures at the same time
to reflect a catastrophic local pool failure. However, to measure
long-term durability (Section 3), we let disks fail independently
following exponential distribution, and thus disks usually fail at
different times. Therefore, some disks could have been partially
repaired when a catastrophic local pool failure happens. In such
cases, only part of the affected local stripes are lost local stripes,
and RHYB can still deliver the traffic reduction for ∗/𝐶 schemes.

Finding #3: RMIN further increases the durability by 0.1-1.2 nines.
RMIN further increases the durability since it further decreases the

Design Considerations and Analysis of
Multi-Level Erasure Coding in Large-Scale Data Centers SC ’23, November 12–17, 2023, Denver, CO, USA

C/C C/D D/C D/D
0

10

20

30

40

D
u

ra
b

il
it

y
 (

n
in

es
)

F#1
F#2F#3

F#4

RALL RFCO RHYB RMIN

Figure 10: Durability (§4.2.3). The figure shows the durability of
MLEC schemes under various repair methods.

repair time, especially for 𝐶/𝐶. However, the increase is small in
𝐶/𝐷 and 𝐷/𝐷. This is because their network repair is already fast
(because the local declustered placement results in much fewer lost
local stripes that require network repair), and thus the repair is
bottlenecked by the time to detect the failure and trigger the repair.

Finding #4: After all the optimizations, 𝐶/𝐷 and 𝐷/𝐷 provide
the best durability while 𝐷/𝐶 provides the worst. Among all MLEC
schemes, 𝐶/𝐷 and 𝐷/𝐷 provide the best durability, because a local-Dp
pool has higher durability than a local-Cp pool, thanks to the prior-
ity reconstruction in local-Dp. Moreover, a catastrophic local-Dp
pool has fewer lost local stripes to repair compared to a catastrophic
local-Cp pool, resulting in less network repair time, especially un-
der RMIN. Note that although 𝐷/𝐷 has a higher chance to have 𝑝𝑛+1
catastrophic local pools in a network pool compared to 𝐶/𝐷, its
disadvantage in terms of the durability is compensated as there
are cases when 𝐷/𝐷 has 𝑝𝑛+1 catastrophic local pools but no lost
network stripes, as mentioned in Finding #1 above. On the other
hand, 𝐷/𝐶 provides the worst durability as it can lose data when any
𝑝𝑛+1 arbitrary local-Cp pools in separate racks fail catastrophically,
and its benefit of fast repair from network-Dp is bottlenecked by
the failure detection time.

5 VS. OTHER EC SCHEMES
We now evaluate MLEC with SLEC and LRC [23], in terms of their
encoding throughput, durability, failure burst tolerance, and repair
network traffic.

5.1 vs. SLEC
5.1.1 Encoding Throughput. Figure 11 shows the single-core
encoding throughput (the heatmap color) under various 𝑘 and 𝑝

configurations, in the 𝑥- and 𝑦-axis, respectively. We perform the
measurement using the Intel ISA-L tool [44] on a single core of
Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz.

Generally, EC with larger values of 𝑘 and 𝑝 has lower encoding
throughput. When more parities (higher 𝑝) need to be computed,
more computation overheads are introduced. On the other hand,
with wider stripes (larger 𝑘), the encoding process might not be able
to fit the required input data into CPU cache, which can degrade
the encoding throughput [43]. This is a reason why SLEC is hard to

0 10 20 30 40 50
Data Chunks k

0

5

10

P
ar

it
y

 C
h

u
n

k
s

p

Single-core encoding throughput for (k+p) SLEC

0

4

8

12

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Figure 11: Encoding throughput for various (k+p) (§5.1.1).

0 10 20 30 40

Durability (nines)

0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

F#1

F#2

C/C vs SLEC Cp

C/C
Loc-Cp-S
Net-Cp-S

0 10 20 30 40 50

Durability (nines)

0

2

4

6

8

10

F#1

F#2

C/D vs SLEC Dp

C/D
Loc-Dp-S
Net-Dp-S

Figure 12: MLEC vs. SLEC durability/throughput tradeoff
(§5.1.2). A dot represents a specific configuration. For example, the
green MLEC 𝐶/𝐶 and 𝐶/𝐷 dots come from various configurations such
as (5+1)/(5+1), (10+2)/(17+3), and many others. For fairness, all the
dots have a configuration with around 30% parity space overhead.

scale. With MLEC, we can limit the number of parities and stripe
width and attain better durability as we show next.

5.1.2 Durability vs. Throughput. EC designers face performance-
durability tradeoffs, for example more parities give higher dura-
bility, but lower encoding throughput. Figure 12 quantifies this
tradeoff with two main findings, F#1-2. Due to space constraints,
we only show two MLEC schemes, (a) 𝐶/𝐶 and (b) 𝐶/𝐷, vs. a local
(de)clustered SLEC (“Loc-Cp-S” or “Loc-Dp-S”, respectively) and
a network (de)clustered SLEC (“Net-Cp-S” or “Net-Dp-S”), whose
layouts were already presented in Section 2.1). For MLEC’s repair
method, we use RMIN, the most optimized one. For fairness, all the
points in the figure come from MLEC/SLEC configurations with a
capacity (parity space) overhead of roughly 30%.

Finding #1: For both MLEC and SLEC, higher durability leads to
lower encoding throughput. To achieve higher durability, both MLEC
and SLEC need more parities, and to maintain the same capacity
overhead, they will need a wider stripe.

Finding #2: MLEC can provide high durability while maintain-
ing higher encoding throughput. At low durability (e.g., <20 nines),
MLEC’s throughput is lower than SLEC, however at high durability
(e.g., >20 nines), MLEC can maintain almost the same throughput
while at the same time increasing its durability dramatically, thanks
to the two-level protection (𝑝𝑙 and 𝑝𝑛) and our repair optimiza-
tions. For example, at the two points pointed by F#2 in Figure 12a, a
(17+3)/(17+3) C/C can reach 39-nine durability with 3GB/s through-
put while a local (28+12) SLEC reaches 33-nine durability with only
1GB/s throughput. Increasing throughput can be done with more
CPU cores, but would lead to higher hardware cost, and potentially
extra overhead caused by imperfect parallelism.

5.1.3 Failure Burst Tolerance. Similar to the MLEC’s failure
burst analysis earlier in Figure 5 in Section 4.1.1, Figure 13 shows
the PDL of an (7+3) SLEC under correlated failure bursts with four
possible chunk placements (local-Cp, local-Dp, network-Cp, and
network-Dp). We describe their pros/cons. Again, by combining the
two levels, MLEC hides each of the SLEC’s limitations and gains
the benefits of the two worlds.

Local SLEC is more susceptible to localized failure bursts. In Figure
13a, local-Cp SLEC can survive highly scattered failures when no
more than 𝑦=𝑥+𝑝 failures are scattered in 𝑥 racks. However, it is
susceptible to localized failure bursts since any 𝑝+1 disk failures in
the same local-Cp pool can cause data loss. In Figure 13b, local-Dp

SC ’23, November 12–17, 2023, Denver, CO, USA M. Wang, J. Mao, R. Rana, J. Bent, S. Olmez, A. George, G. W. Ransom, J. Li, and H. S. Gunawi

0 20 40 60

0

20

40

60

#
 f

ai
le

d
 d

is
k

s

0 e
−6

e
−4

e
−2

1

(a) Loc-Cp

0 20 40 60
affected

0

20

40

60
0 e

−6
e

−4
e

−2
1

(b) Loc-Dp

0 20 40 60
racks

0

20

40

60
0 e

−6
e

−4
e

−2
1

(c) Net-Cp

0 20 40 60

0

20

40

60
0 e

−6
e

−4
e

−2
1

(d) Net-Dp

Figure 13: PDL of SLEC under correlated failures (§5.1.3).
Whose patterns (but not the actual values) can be compared with
Figure 5. A total of𝑦 simultaneous disk failures are randomly scattered
across 𝑥 racks. The square color represents the PDL.

SLEC performs even worse under localized failure bursts (high 𝑦,
low 𝑥), since it has a larger local pool and thus has a higher chance
to have 𝑝+1 disk failures in the pool, which can lead to data loss.

Network SLEC is more susceptible to scattered failure bursts. In
Figure 13c, network-Cp SLEC performs well under localized failure
bursts, and the PDL is 0 when no more than 𝑝 racks have failures.
However, it can lose data under scattered failures (high 𝑦, high
𝑥), which are more likely to have 𝑝+1 or more disk failures in the
same network-Cp pool. In Figure 13d, network-Dp SLEC performs
even worse under scattered failures, since it can lose data when
any arbitrary 𝑝+1 disks in separate racks fail.

5.1.4 Repair Network Traffic. Lastly, we analyze the repair
network traffic, but due to space constraints, we do not show any
figure. We find that network SLEC requires a huge amount of cross-
rack repair network traffic, which can increase with more parities
and wider stripes for higher durability. A (7+3) network SLEC
requires hundreds of TB repair network traffic every day, which can
largely interfere user network traffic. On the other hand, MLEC only
requires a few TB repair network traffic every thousand of years,
thanks to both the local protection and our repair optimizations.

5.2 vs. LRC
We now perform the same evaluation but with LRC, a popular
EC approach that has been extensively studied in recent years
[23, 43, 45–48]. We start with describing the layout differences.

5.2.1 MLEC vs. LRC Layouts. A (k,l,r) LRC, in the first stage,
divides 𝑘 data chunks into 𝑙 local groups and computes one local
parity in each group, and in the second stage, computes 𝑟 global
parities from all the 𝑘 data chunks [23]. Figure 14 shows a (4,2,2)
LRC. We treat LRC as a one-level placement EC, but with two-stage
encoding. Unlike LRC, MLEC might fit better deployments where
the two levels are managed by different organizations; for example,
a large institution buys RBODs (local EC pools) from storage ven-
dors and on top of them manages the network-level EC. LRC on
the other hand might be more desirable to deployments that have
direct access to and can manage all the disks.

Although MLEC and LRC both perform two stages of coding,
they differ in several ways. (a) For the top-level encoding, each of
MLEC’s network parity is computed from only part of data chunks
in the network stripe (e.g., back in Figure 2.1c, a13 is computed from
a1 and a3), but each of LRC’s global parity is computed from all the
data chunks in the stripe (e.g., in Figure 14, aP and aQ are computed
based on a1 to a4). (b) For the bottom-level encoding, MLEC can

a1

a2

a3

a4

L

R

C

a1 a2 a12 a3 a4 a34 aP aQ

R1 R4R2 R3 R5 R6 R7 R8

Figure 14: A (4,2,2) LRC (§5.2.1). To be compared with MLEC
layout in Figure 2c. Here, aP and aQ are the first and second parities
of a1 to a4 using specific LRC encoding formulas [23].

have multiple parities in each local stripe (e.g., an ∗/(4+2) MLEC
has 2 local parities in a local stripe), but LRC always has one single
parity in each local group (e.g., a12 in Figure 14). (c) Regarding the
double parity, MLEC always computes double parities from network
parities (e.g., back in Figure 2.1c, aP is based on a13 and a24), but
many LRCs don’t do the same (although some of its variants do
[46, 47]). (d) On chunk placement, MLEC puts one local stripe in a
local pool on a separate rack, and can choose de/clustered placement
for both intra- and inter-pool, resulting in four possible schemes.
In contrast, LRC usually puts every chunk in a separate rack in a
declustered way [23, 48]. Although it’s possible for LRC to put one
local group in the same rack [43], we are not aware of any existing
LRC systems that adopt this.

5.2.2 Durability vs. Throughput. Due to these differences,MLEC
and LRC provide different tradeoffs in performance and durabil-
ity, which we evaluate here. Figure 15 quantifies the durability
and throughput tradeoff in MLEC and LRC. Here, we only show
declustered LRC (“LRC-Dp”) as the most common configuration;
we never found “LRC-Cp.” For the MLEC scheme, we only show 𝐶/𝐷
as it gives the best durability among all the other schemes. Just like
previously, we compare various configurations all having capacity
(parity space) overhead of around 30%.

Finding #1:MLEC can provide

0 20 40 60

Durability (nines)

0

2

4

6

8
T

h
ro

u
g

h
p

u
t

(G
B

/s
)

C/D vs LRC-Dp

C/D
LRC-Dp

Figure 15: MLEC vs. LRC
durability and throughput
tradeoff (§5.2.2).

high durability with higher encod-
ing throughput. This is because
LRC only has one parity in each
local group, and thus depends on
more global parities to provide
higher durability, but again more
global parities can degrade the
encoding throughput. Moreover,
LRC-Dp places chunks in a one-
level declustered way just similar
to network-Dp SLEC, making it have a similar durability pattern as
network-Dp SLEC.

Finding #2: The multi-level nature of MLEC allows fewer parities
in each level, which then helps MLEC alleviate durability loss due to
failure detection time. Note that when multiple disks fail, a declus-
tered (Dp) pool usually has a very small number of high-priority
stripes (i.e., stripes that have multiple failed chunks). Such stripes
are prioritized and repaired fast, leading to high durability. This
durability benefit increases with more parities and larger pool size
(due to an even smaller number of high-priority stripes). However,
because there is a 30-minute failure detection time (commonly used
[23, 43, 48]), the increased durability diminishes and is not fully
reflected. This is the reason why both 𝐶/𝐷 and LRC-Dp lose some
durability. But, since 𝐶/𝐷 performs declustered parity in a local pool

Design Considerations and Analysis of
Multi-Level Erasure Coding in Large-Scale Data Centers SC ’23, November 12–17, 2023, Denver, CO, USA

(which is smaller than LRC-Dp’s pool) and has fewer parities at each
level, the declining durability is less severe compared to LRC-Dp.

Furthermore, our multi-level-aware repair optimizations fur-
ther improve 𝐶/𝐷’s durability, helping it reach high durability with
higher encoding throughput compared to LRC-Dp. We also note
that if failure detection time is reduced significantly (e.g., to 1
minute), LRC-Dp’s durability could be similar or slightly better
than MLEC, which we will explore in the future. However, such
fast failure detection is not realistic as disks often fail transiently
and should not be rebuilt hastily.

5.2.3 Failure Burst Tolerance. Just like in Section 5.1.3, we
now measure the PDL of LRC under correlated failure bursts, as
shown in Figure 16, using a (14, 2, 4) LRC-Dp. We pick this LRC
configuration as it has a similar throughput rate as our (10+2)/(17+3)
MLEC configuration, based on previous section’s findings. However,
we emphasize that their actual values in the figure should not be
directly compared with the MLEC’s PDL results shown earlier
in Figure 5, as it would be an unfair comparison since one could
always increase the number of parities and stripe width to get better
durability/PDL. We already compare MLEC vs. LRC fairly in the
previous section.

LRC-Dp is susceptible to highly

0 20 40 60
affected racks

0

20

40

60

#
 f

ai
le

d
 d

is
k

s

0 e
−6

e
−4

e
−2

1

(14,2,4) LRC-Dp

Figure 16: PDL pattern
of LRC under correlated
failures.

scattered failure bursts. Since LRC-
Dp places chunks in a one-level declus-
tered way across racks, its failure
burst tolerance pattern is similar to
network-Dp SLEC (shown earlier in
Figure 13d), and can lose data under
highly scattered failure bursts. How-
ever, as discussed earlier in Section
4.1.1, MLEC in general is robust to
highly scattered failures.

5.2.4 Repair Network Traffic. Finally, we analyze the repair
network traffic of LRC-Dp. We find that LRC-Dp’s repair network
traffic is less than network SLEC since most failures can be repaired
using the local group with less chunks. However, every repair still
needs to read and write over the network, which can still lead to
lots of repair network traffic. On the other hand, MLEC requires
much less network traffic. We do not show any figure due to space
constraints.

6 DISCUSSIONS
6.1 Takeaways
We believe our findings will provide guidance for large-scale stor-
age architects to choose ideal configurations for their particular
environments and requirements. Here are some examples:

(1) For institutions without large storage devops teams, they can
buy RBODs from storage vendors, build MLEC on top easily,
and choose RepairALL with some sacrifice in performance
and durability.

(2) Those with more flexibility can optimize their MLEC with
our advanced repair techniques such as RepairMIN.

(3) Systems detecting frequent occurrences of correlated failure
bursts should utilize C/C to get better failure burst tolerance.

(4) Systems with rare failure bursts should use C/D or D/D to
get higher durability under independent failures.

(5) Systems with lower durability requirements should choose
SLEC for better performance.

(6) Systems that prioritize high durability (e.g. certain HPC sys-
tems where any lost chunk can make PBs of correlated data
useless) should choose MLEC to minimize overheads.

We also hope our paper will encourage more research on MLEC
for ML/HPC/cloud systems. For example, when offloading analyt-
ics to computational storage in HPC systems, efficiently mapping
logical objects to physical blocks in erasure-coded systems poses a
challenge. MLEC adds complexity to this problem due to its layering,
which can be explored in future work.

6.2 Reproducibility of the Study
This project has been ongoing for over 1.5 years involving a group
consisting of a theorist, a large-scale system administrator (>20k
disks), a developer/maintainer, an architect, and academics. The
diversity of roles ensures that the assumptions in our work closely
match real-world scenarios.

The group has verified many important failure cases, possi-
ble/practical repair methods, and actual system architectures.

We together scrutinized the correctness of every scheme and
method. We went back and forth to fix errors/misassumptions. Our
multiple methodologies verify each other. For example, when the
simulator result didn’t conform with the theoretical model, the
theorist and simulator developer went back and forth in multiple
iterations to resolve discrepancies.

Our results are fully reproducible. We have released our source
code [24] on Github and a detailed evaluation artifact [25] on
Chameleon Trovi.

7 CONCLUSION
We have provided comprehensive design considerations and analy-
sis of MLEC at scale. MLEC can be designed in multiple dimensions.
We have quantified their performance and durability with various
evaluation strategies, and have shown which MLEC schemes and
repair methods can provide the best failure tolerance and greatly
reduce repair network traffic. We have also shown that MLEC can
provide high durability with higher encoding throughput and less
repair network traffic over other EC schemes.

8 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their tremendous feedback
and comments. We also would like to thank Gary Grider from
Los Alamos National Lab (LANL) for his helpful discussions on
real-world deployment considerations of MLEC. This material was
supported by funding from NSF grant No. CCF-2119184, funding
from Oak Ridge National Laboratory (ORNL) under Contract No.
DE-AC05-00OR22725 with Office of Science of the U.S. Department
of Energy, as well as generous donations from Seagate. The exper-
iments in this paper were performed in the Chameleon [49, 50]
testbed.

Any opinions, findings, and conclusions, or recommendations
expressed herein are those of the authors and do not necessarily
reflect the views of the NSF or other institutions.

SC ’23, November 12–17, 2023, Denver, CO, USA M. Wang, J. Mao, R. Rana, J. Bent, S. Olmez, A. George, G. W. Ransom, J. Li, and H. S. Gunawi

REFERENCES
[1] D. Colarelli and D. Grunwald. Massive Arrays of Idle Disks For Storage Archives.

In Proceedings of the 2002 ACM/IEEE Conference on Supercomputing (SC), 2002.
[2] Huaxia Xia and Andrew A. Chien. RobuSTore: Robust Performance for

Distributed Storage Systems. In Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing (SC), 2007.

[3] Zizhong Chen. Optimal real number codes for fault tolerant matrix operations.
In Proceedings of International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2009.

[4] Haiyang Shi and Xiaoyi Lu. TriEC: Tripartite Graph Based Erasure Coding NIC
Offload. In Proceedings of International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), 2019.

[5] Haiyang Shi and Xiaoyi Lu. INEC: Fast and Coherent In-Network Erasure
Coding. In Proceedings of International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), 2020.

[6] Liangfeng Cheng, Yuchong Hu, Zhaokang Ke, Jia Xu, Qiaori Yao, Dan Feng,
Weichun Wang, and Wei Chen. LogECMem: Coupling Erasure-Coded
In-Memory Key-Value Stores with Parity Logging. In Proceedings of International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC), 2021.

[7] Yuya Uezato. Accelerating XOR-based erasure coding using program
optimization techniques. In Proceedings of International Conference on High
Performance Computing, Networking, Storage and Analysis (SC), 2021.

[8] Salvatore Di Girolamo, Daniele De Sensi, Konstantin Taranov, Milos Malesevic,
Maciej Besta, Timo Schneider, Severin Kistler, and Torsten Hoefler. Building
blocks for network-accelerated distributed file systems. In Proceedings of
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC), 2022.

[9] David Patterson, Garth Gibson, and Randy Katz. A Case for Redundant Arrays
of Inexpensive Disks (RAID). In Proceedings of the 1988 ACM SIGMOD
Conference on the Management of Data (SIGMOD), 1988.

[10] Jaeho Kim, Jongmin Lee, Jongmoo Choi, Donghee Lee, and Sam H. Noh.
Enhancing SSD reliability through efficient RAID support. In Proceedings of the
Asia-Pacific Workshop on Systems (APSys), 2012.

[11] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin Yang, Zhufan Wang, and
Weimin Zheng. RAID+: Deterministic and Balanced Data Distribution for Large
Disk Enclosures. In Proceedings of the 16th USENIX Symposium on File and
Storage Technologies (FAST), 2018.

[12] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and
Kannan Ramchandran. A Solution to the Network Challenges of Data Recovery
in Erasure-coded Distributed Storage Systems: A Study on the Facebook
Warehouse Cluster. In the 5th Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2013.

[13] KV Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B. Shah, and Kannan
Ramchandran. Having Your Cake and Eating It Too: Jointly Optimal Erasure
Codes for I/O, Storage and Network-bandwidth. In Proceedings of the 13th
USENIX Symposium on File and Storage Technologies (FAST), 2015.

[14] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A. Pease. A Tale of Two
Erasure Codes in HDFS. In Proceedings of the 13th USENIX Symposium on File
and Storage Technologies (FAST), 2015.

[15] Jeffrey Thornton Inman, William Flynn Vining, Garrett Wilson Ransom, and
Gary Alan Grider. Marfs, a near-posix interface to cloud objects. ; Login,
42(LA-UR-16-28720; LA-UR-16-28952), 2017.

[16] Scality ARTESCA: Object Storage for S3 Applications.
https://www.scality.com/products/artesca/.

[17] Hierarchical Erasure Coding: Making Erasure Coding Usable. https://www.snia.
org/sites/default/files/SNIA_Hierarchical_Erasure_Coding_Final.pdf.

[18] Jehan-François Pâris, S. J. Thomas J. E. Schwarz, Ahmed Amer, and Darrell D. E.
Long. Highly reliable two-dimensional RAID arrays for archival storage. In 31th
IEEE – International Performance Computing and Communications Conference
(IPCCC), 2012.

[19] Neng Wang, Yinlong Xu, Yongkun Li, and Si Wu. OI-RAID: A Two-Layer RAID
Architecture towards Fast Recovery and High Reliability. In Proceedings of the
International Conference on Dependable Systems and Networks (DSN), 2016.

[20] Alexander Thomasian. Multi-level RAID for very large disk arrays. In ACM
SIGMETRICS Performance Evaluation Review, 2006.

[21] Sung Hoon Baek, Bong Wan Kim, Eui Joung Joung, and Chong Won Park.
Reliability and performance of hierarchical RAID with multiple controllers. In
Proceedings of the 20st ACM Symposium on Principles of Distributed Computing
(PODC), 2001.

[22] Alexander Thomasian and Yujie Tang. Performance, Reliability, and
Performability Aspects of Hierarchical RAID. In 2011 IEEE Sixth International
Conference on Networking, Architecture, and Storage (NAS), 2011.

[23] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. Erasure Coding in Windows Azure
Storage. In Proceedings of the 2012 USENIX Annual Technical Conference (ATC),
2012.

[24] MLEC Github repository. https://github.com/ucare-uchicago/mlec-sim.
[25] MLEC Artifact on Chameleon Trovi. https://tinyurl.com/mlec-artifact.
[26] Richard R. Muntz and John C. S. Lui. Performance analysis of disk arrays under

failure. In Proceedings of the 16th International Conference on Very Large Data
Bases (VLDB), 1990.

[27] Mark Holland and Garth Gibson. Parity Declustering for Continuous Operation
in Redundant Disk Arrays. In Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 1992.

[28] Guillermo A. Alvarez, Walter A. Burkhard, and Flaviu Cristian. Tolerating
Multiple Failures in RAID Architectures with Optimal Storage and Uniform
Declustering. In Proceedings of the 24th Annual International Symposium on
Computer Architecture (ISCA), 1997.

[29] Guillermo A. Alvarez, Walter A. Burkhard, Larry J. Stockmeyer, and Flaviu
Cristian. Declustered disk array architectures with optimal and near-optimal
parallelism. In Proceedings of the 25th Annual International Symposium on
Computer Architecture (ISCA), 1998.

[30] Thomas J.E. Schwarz S.J., Jesse Steinberg, and Walter A. Burkhard. Permutation
development data layout (PDDL). In Proceedings of the 5th International
Symposium on High Performance Computer Architecture (HPCA-5), 1999.

[31] Huan Ke, Haryadi S Gunawi, David Bonnie, Nathan DeBardeleben, Michael
Grosskopf, Terry Grové, Dominic Manno, Elisabeth Moore, and Brad Settlemyer.
Extreme protection against data loss with single-overlap declustered parity. In
2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 343–354. IEEE, 2020.

[32] CORVAULT - Self-Healing, High Density Data Storage.
https://www.seagate.com/products/storage/data-storage-systems/corvault/.

[33] Jeff Bonwick and Bill Moore. Zfs: The last word in file systems, 2007.
[34] Dell PowerEdge RAID Controller 12.

https://infohub.delltechnologies.com/p/dell-poweredge-raid-controller-12/.
[35] Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin, and Tim Zajic.

Splitting for rare event simulation: analysis of simple cases. In Proceedings of the
28th conference on Winter simulation, pages 302–308, 1996.

[36] Victor F Nicola, Perwez Shahabuddin, and Marvin K Nakayama. Techniques for
fast simulation of models of highly dependable systems. IEEE Transactions on
Reliability, 50(3):246–264, 2001.

[37] Daniel Ford, Franis Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlna. Availability in Globally
Distributed Storage Systems. In Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[38] Kevin M. Greenan, James S. Plank, and Jay J. Wylie. Mean time to meaningless:
MTTDL, Markov models, and storage system reliability. In the 2nd Workshop on
Hot Topics in Storage and File Systems (HotStorage), 2010.

[39] Hiroaki Akutsu and Tomohiro Kawaguchi. Reliability analysis of distributed
raid with priority rebuilding. In Proc. USENIX Conf., 2013.

[40] Kishor S Trivedi. Probability and statistics with reliability, queuing, and computer
science applications. John Wiley & Sons, 2001.

[41] ORNL’s Alpine storage system.
https://www.olcf.ornl.gov/olcf-resources/data-visualization-resources/alpine.

[42] Personal Communication with LANL, ORNL, and Seagate Engineers and
Operators.

[43] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick P. C. Lee, Weichun Wang,
and Wei Chen. Exploiting Combined Locality for Wide-Stripe Erasure Coding in
Distributed Storage. In Proceedings of the 19th USENIX Symposium on File and
Storage Technologies (FAST), 2021.

[44] Intel Intelligent Storage Acceleration Library (Intel ISA-L).
https://software.intel.com/en-us/storage/ISA-L.

[45] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos,
Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur.
XORing Elephants: Novel Erasure Codes for Big Data. In Proceedings of the 39th
International Conference on Very Large Data Bases (VLDB), 2013.

[46] Oleg Kolosov, Gala Yadgar, Matan Liram, Itzhak Tamo, and Alexander Barg. On
Fault Tolerance, Locality, and Optimality in Locally Repairable Codes. In
Proceedings of the 2018 USENIX Annual Technical Conference (ATC), 2018.

[47] Itzhak Tamo and Alexander Barg. A family of optimal locally recoverable codes.
IEEE Transactions on Information Theory, 60(8):4661–4676, 2014.

[48] Saurabh Kadekodi, Shashwat Silas, David Clausen, and Arif Merchant. Practical
Design Considerations for Wide Locally Recoverable Codes (LRCs). In
Proceedings of the 21th USENIX Symposium on File and Storage Technologies
(FAST), 2023.

[49] Chameleon - A configurable experimental environment for large-scale cloud
research. https://www.chameleoncloud.org.

[50] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan
Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe
Mambretti, Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs.
Lessons Learned from the Chameleon Testbed. In Proceedings of the 2020
USENIX Annual Technical Conference (ATC), 2020.

https://www.scality.com/products/artesca/
https://www.snia.org/sites/default/files/SNIA_Hierarchical_Erasure_Coding_Final.pdf
https://www.snia.org/sites/default/files/SNIA_Hierarchical_Erasure_Coding_Final.pdf
https://github.com/ucare-uchicago/mlec-sim
https://tinyurl.com/mlec-artifact
https://www.seagate.com/products/storage/data-storage-systems/corvault/
https://infohub.delltechnologies.com/p/dell-poweredge-raid-controller-12/
https://www.olcf.ornl.gov/olcf-resources/data-visualization-resources/alpine
https://software.intel.com/en-us/storage/ISA-L
https://www.chameleoncloud.org

	Abstract
	1 Introduction
	2 MLEC Design
	2.1 MLEC Basics and Logical View
	2.2 MLEC Schemes and Physical View
	2.3 Failure Modes
	2.4 Repair Methods

	3 Methodology
	4 MLEC Analysis
	4.1 Analysis of MLEC Schemes
	4.2 Analysis of Repair Methods

	5 vs. Other EC Schemes
	5.1 vs. SLEC
	5.2 vs. LRC

	6 Discussions
	6.1 Takeaways
	6.2 Reproducibility of the Study

	7 Conclusion
	8 Acknowledgments
	References

