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Abstract

We present a fast and scalable testing approach for datacen-
ter/cloud systems such as Cassandra, Hadoop, Spark, and
ZooKeeper. The uniqueness of our approach is in its ability
to overcome the path/state-space explosion problem in test-
ing workloads with complex interleavings of messages and
faults. We introduce three powerful algorithms: state symme-
try, event independence, and parallel flips, which collectively
makes our approach on average 16× (up to 78×) faster than
other state-of-the-art solutions. We have integrated our tech-
niques with 8 popular datacenter systems, successfully repro-
duced 12 old bugs, and found 10 new bugs — all were done
without random walks or manual checkpoints.
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1 Introduction

Datacenter systems such as distributed key-value stores, scal-
able file systems, data-parallel computing frameworks, and
distributed synchronization services, are the backbone en-
gines of modern clouds, but their complexities and intrica-
cies make them hard to get right. Among all types of issues
in such systems, complex interleavings of messages, crashes,
and reboots are among the most troublesome [39, 50, 61, 62,
79]. Such a non-deterministic order of events across multi-
ple nodes cause “distributed concurrency” bugs to surface
(or “DC bugs” for short). Developers deal with DC issues
on a monthly basis [45, 48], or worse on a weekly basis for
newly developed protocols [6]. They are hard to reproduce
and diagnose (take weeks to months to fix the majority) and
lead to harmful consequences such as whole-cluster unavail-
ability, data loss/inconsistency, and failed operations [59].

Ideally, bugs should be unearthed in testing, not in de-
ployment [35]. One systematic testing technique that fits the
bill is stateless/software model checking that runs directly
on implementation-level distributed systems [46, 49, 55, 58,
73, 80, 81]. These software model checkers1 attempt to exer-
cise many possible interleavings of non-deterministic events
such as messages and fault timings, hereby pushing the tar-
get system into unexplored states and potentially revealing
hard-to-find bugs.

One nemesis of checkers is the path explosion problem.
As an illustration, suppose there are 10 concurrent messages
(events) {a,b, .., j}, a naive checker such as depth-first search
(DFS) has to exercise 10! (factorial) unique execution paths

1In this paper, “checkers” specifically represent the distributed system
software model checkers, as cited above, not including “local” thread-
scheduling checkers [22, 66] or the classical model checkers [37, 42].

https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1145/3302424.3303986
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Figure 1. Checkers1 scalability. The x-axis represents the

tested protocol (Raft or Paxos) with 1 to 3 concurrent updates. The

log-scaled y-axis represents the number of paths to exhaust the

search space (i.e., the path explosion). Compared to our checker,

FlyMC, current checkers do not scale well under more complex

workloads. “↑” indicates incomplete path exploration.

(ab ..ij, ab ..ji, and so on). Figure 1 illustrates further this
explosion problem. The gray “DFS” bar shows almost 100
paths to explore (in y-axis) under a simple workload such as
an instantiation of a Raft update protocol (“Raft-1”) [67].

To tame this problem, checkers employ path reduction al-

gorithms. For example, MODIST [81] and some others [73,
80] adapted the popular concept of Dynamic Partial Order
Reduction (DPOR) [38, 41], for example “a message to be
processed by a given node is independent of other concur-
rent messages destined to other nodes [hence, need not to be
interleaved].” SAMC [58] also extended DPOR further. As
a result, reductions significantly improve upon a naive DFS
method, as shown by the “mDPOR” and “SAMC” bars on
Raft-1 in Figure 1.

Despite these early successes, we found that the path ex-
plosion problem remains untamed under more complex work-
loads. For example, under two or three concurrent Raft up-
dates (Raft-2 and -3 workloads in Figure 1), the number
of paths to explore still increases significantly in MODIST

and SAMC. Not to mention a much more complex workload
such as Paxos [57] where the path explosion is larger (e.g.,
Paxos-1 to -3 workloads in Figure 1).

To sum up, existing checkers fail to scale under more com-
plex distributed workloads. Yet in reality, some real-world
bugs are still hidden behind complex interleavings (§7). For
example, the Paxos bug in Cassandra in Figure 2 can only
surface under a workload with three concurrent updates with
54 events in total. These kinds of bugs will take weeks to
surface with existing checkers, wasting testing compute re-
sources and delaying bug finding and fixes. For all the rea-
sons above, to find DC bugs, some checkers mix their algo-
rithms with random walks [81] or manual checkpoints [49],
hoping to faster reach “interesting” interleavings that would
lead to DC bugs. However, this approach becomes unsystem-
atic – the random and manual approaches lead to poorer cov-
erage than a systematic coverage of all states relevant to ob-
servable events.

We present FLYMC, a fast, scalable, and systematic soft-
ware/stateless model checker that covers all states relevant to

observable events for testing distributed systems implemen-
tations. FLYMC achieves scalability by leveraging the inter-
nal properties of distributed systems as we illustrate below
with three FLYMC’s algorithms.

(1) Communication and state symmetry: Common in cloud
systems, many nodes have the same role (e.g., follower nodes,
data nodes). The state transitions of such symmetrical nodes
usually depend solely on the order and content of messages,
irrespective of the node IDs/addresses. Thus, FLYMC reduces
different paths that represent the same symmetrical commu-
nication or state transition into a single path.

(2) Event independence: While state symmetry significantly
omits symmetrical paths, many events must still be permuted
within the non-symmetrical paths. FLYMC is able to identify
a large number of event independencies that can be leveraged
to alleviate a wasteful reordering. For example, FLYMC au-
tomatically marks concurrent messages that update disjoint
sets of variables as independent. FLYMC can also find inde-
pendence among crash-related events.

(3) Parallel flips: While the prior methods reduce message
interleavings to every node, in aggregate many flips (reorder-
ing of events) must still be done across all the nodes. The
problem is that in existing checkers, only one pair of events
is flipped (reordered) at a time. To speed this up, parallel
flips perform simultaneous reorderings of concurrent mes-
sages across different nodes to quickly reach hard-to-reach
corner cases.

Finally, not only path reduction but wall-clock speed also
matters. Existing checkers must wait a non-negligible amount
of time in between every pair of enabled events for some
correctness and functionality purposes. The wait time is rea-
sonable under simple workloads, but it significantly hurts the
aggregate testing time of complex workloads. FLYMC opti-
mizes this design with local ordering enforcement and state
transition caching which will be explained later (§5).

Collectively, the algorithms make FLYMC on average 16×
(up to 78×) faster than other state-of-the-art systematic and
random-based approaches, and the design optimizations im-
prove it to 28× (up to 158×). FLYMC is integrated with 8
widely-used systems, the largest number of integration that
we are aware of. We model checked 10 protocol implementa-
tions (Paxos, Raft, etc.), successfully reproduced 12 old bugs,
and found 10 new DC bugs, all confirmed by the develop-
ers and all were done in a systematic way without random
walks or manual checkpoints. Some of these bugs cannot be
reached by prior checkers within a reasonable time. We have
released our FLYMC publicly [20].

The following sections detail our four contributions:

1. Highly scalable checker algorithms that provide sys-
tematic state coverage for given workloads. (§3).

2. A checker design that is backed with static analysis
help developers extract information from the target sys-
tem and use it to write the system-specific parts of the
algorithms (§4).
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Figure 2. A complex DC bug in Cassandra Paxos (CASS-1). This bug which we label as “CASS-1” [4] requires three Paxos updates

and only surfaces with the two flips (the prepare message with ballot 2 must be enabled before the commit with ballot 1 and the prepare with

ballot 3 before the propose with ballot 2) happening within all the possible flips of the 54 events, resulting in data inconsistency.
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Figure 3. A checker architecture. As explained in Section 2.

3. Additional optimizations that improve the checker’s
wall-clock speed in exploring paths (§5).

4. A comprehensive integration with challenging appli-
cations, and detailed evaluations that demonstrate the
checker’s effectiveness. (§6-7).

For interested readers, we provide an in-depth technical
report [21].

2 Background

• Checker architecture: The concept of checkers and how
they work in detail can be found in existing checker litera-
ture [58, §2.1][81, §2] [73, §3][21, §2]. This section briefly
discusses the important components and terms.

As shown in Figure 3, a checker runs the target workload
(e.g., in nodes A and B) and intercepts all the in-flight mes-
sages (e.g., the concurrent messages a1, a2, b1, and b2 inter-
cepted by the gray “hooks”) to control their timings. The
checker’s server then enables one message event at a time
(e.g., enable b1). The checker’s hooks wait for the target sys-
tem to quiesce (after b1 is processed) and the node to pass the
new resulting global state (e.g., S1) to the checker’s server
which records it as the state-event history (e.g., S0+b1→S1).
The developers decide which global state variables to check
(e.g., role, leader, ballot number). The server then runs asser-
tions to find any safety violation in the new state.

New events generated by every enabled event will be inter-
cepted again by the checker (e.g., a3 generated in response
to b1, not shown in the figure). This whole process repeats
(S0+b1→S1, S1+b2→S2, ...+a3→...) until it reaches a termi-

nation point – when a specification is violated or the work-
load ends without any violation (e.g., no more messages ob-
served). This forms an explored path (e.g., b1b2...a3). A path
implies a unique total ordering of events; it is also known as
“trace” or “execution sequence” [44, 54, 81].

Given a previously exercised path, the checker will per-
mute the possible interleavings (to-explore paths) and restart
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Figure 4. Communication symmetry. The figure is explained

in the “Problem” part of Section 3.1.

the workload. For example, in the next run, it will flip b2 be-
fore b1, hence exercising a new path b2b1... within the same
workload. Paths can also contain crash/reboot events; for ex-
ample, a path b1✁BB

↑b2... implies a crash ✁B and a reboot B↑ on
node B are injected after b1 is processed but before b2 arrives.
The whole test completes (exhausts the state space) if there
are no more paths left to explore.

3 FLYMC Algorithms

By considering the properties of distributed systems, we equip
FLYMC with two reduction algorithms: communication and
state symmetry (§3.1) and event independence (§3.2); and
one prioritization algorithm: parallel flips (§3.3). The two re-
duction algorithms reduce unnecessary interleavings (redun-
dant paths) that would lead to the same states already ex-
plored before. While the prioritization algorithm prioritizes
interleavings that would reach corner cases faster.

Throughout this section, we describe each of the algorithms
in the following format: (a) the specific path explosion issue
being addressed, (b) the intuition for the reduction or prior-
itization, (c) the algorithm in a high-level description, and
(d) a comparison to existing solutions. Later in Section 4,
we discuss the intricacies of implementing these algorithms
correctly and how our static analyses support can help devel-
opers in this regard.

3.1 Communication and State Symmetry

• PROBLEM: Let us imagine a simple communication in
Figure 4a where message k triggers l , x triggersy, and k and
x are messages of the same type (e.g., a write request). Fig-
ures 4b and 4c show two possible reordered paths klxy and
xykl . While these paths seem to be different, their commu-
nication structures in Figures 4b-c hint at a possibility for
symmetrical reduction.

http://issues.apache.org/jira/browse/cassandra-6013
http://issues.apache.org/jira/browse/cassandra-6023
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A method to implement the symmetrical reduction in local
concurrency literature is to abstract the system property [32,
33, 75]. Applying this to distributed systems, we initially at-
tempted to abstract only the communication structure, specif-
ically by abstracting the sender and destination node IDs
(e.g., IP addresses) to a canonical receiving order; for exam-
ple in Figure 4b, as node B is the first to receive, its node ID
is abstracted to node “1” (e.g., kA→B becomes k2→1). Simi-
larly in Figure 4c, as nodeA is the first to receive, its node ID
is abstracted to node “1” (e.g., xB→A becomes x2→1), hence
the two figures exhibit a communication symmetry as k and
x are messages of the same type from node “2” to “1”.

Unfortunately, this approach is not always effective be-
cause most messages carry a unique content. For example,
in Paxos, messages k and x carry different ballot numbers,
hence cannot be treated the same. Thus, while the commu-
nication structures (the arrows) in Figures 4b and 4c look
symmetrical, abstracting only the messages does not lead to
a massive reduction.

• INTUITION: Fortunately, in many cloud systems, many
nodes have the same role (e.g., follower nodes, data nodes)
although their node IDs are different. Furthermore, the state
transitions of such symmetrical nodes usually depend solely
on the order and content of the messages, irrespective of the
sending/receiving node IDs.

To illustrate this, let us consider the two communication
structures in Figures 5a-b, which represent the first phase of
a (much simplified) Paxos implementation with two concur-
rent updates (solid and dashed lines). Node A broadcasts its
prepare messages (the solid lines), a1 to itself and b1 to node
B, with “1” representing a ballot number 1. Similarly, node B
broadcasts b2 to itself and a2 to node A with ballot number 2
(dashed lines).

If we compare the two communication structures in Fig-
ures 5a-b, they are not symmetrical, unlike the previous ex-
ample in Figure 4. But let’s analyze the state transition of
every node, such as the highest ballot number the node has re-
ceived, as shown in the middle table of Figure 5. In this Paxos
example, every node only accepts a higher ballot and dis-
cards a new lower one, hence the node prepare status mono-
tonically increases. In the left ordering, b1a2b2a1 in Figure
5a, node A’s state transition is 00222 and B’s is 01122. In
the ordering on the right, a1b2a2b1, the state transition is sym-

metrical (mirrored), 01122 in A and 00222 in B.
To sum up, while the two paths do not exhibit communica-

tion symmetry (Figures 5a-b), their state transitions are sym-

metrical (the middle table). Thus, state symmetry can be ef-
fective for path pruning (e.g., if b1a2b2a1 is already explored,
then a1b2a2b1 is redundant).

• ALGORITHM: To implement symmetry, first, we keep a
history of state-event transitions (§2) that have been exer-
cised in the past, in the following format: Si+ej→Sj where
“S” denotes the global state (i.e., collection of per-node states)

A  B   A  B 

0  0   0  0

0  1   1  0

2  1   1  2

2  2   2  2

2  2   2  2

(a) 

A B

a1

b1

a2

b2

A B

a1

b1

a2

b2

State Symmetry
(but not communication symmetry) (b) 

State of highest ballot number in:

Figure 5. State symmetry. The figure is explained in the “In-

tuition” part of Section 3.1.

and ej is the next enabled event. So, when ej is enabled, the
global state transitions from state Si to Sj.

In addition, we keep a history of {absState+absEv} tran-
sitions where absState denotes the abstracted global state
(in alphabetical order) that excludes the node IDs for sym-
metrical nodes such as datanodes (and similarly absEv for
events). Using the example in Figure 5a, the first event will
generate {00+1} where 00 represents the abstracted state of
datanodes A and B (with just the highest ballot numbers, ex-
cluding the node IDs) and 1 represents the abstracted a1 mes-
sage. Subsequently, we record {01+2}, {12+2}, and {22+1}
to the history. Important to note that state 12 is from the al-
phabetically ordered state 21; that is, symmetry implementa-
tion requires alphabetical/numerical sorting.

With this history, the second ordering a1b2a2b1 in Figure
5b will be marked symmetrical; when a1 is to be enabled
(abstracted to +1) when the system is at state 00, a historical
match {00+1} will be found. Similarly, for b2 (abstracted to
+2) when the system is at state 01, a match {01+2} will be
found. One caveat is that state symmetry works less effective
in earlier paths as the history is still being built up, but after
a few initial paths, the “cache hit rate” increases significantly
(more in §5).

• COMPARISON: In classical (stateful) model checking, sym-
metry is commonly used, e.g., for symmetrical processors
[32, 75]. In distributed checkers, we found none that em-
ploys symmetry [46, 49, 55, 58, 73, 80, 81], except SAMC
[58]. However, SAMC only uses symmetry for reducing un-
necessary crash timings, but not for concurrent messages.
FLYMC’s symmetry is more powerful as it also generalizes
for crash timings. More specifically, a crash is abstracted as a
crash event targeted to a particular node; for example, {12+✁2}
implies a crash injected at the node with ballot number 2 (re-
gardless of the datanode IDs).

3.2 Event Independence

• PROBLEM: While state symmetry omits symmetrical paths,
within the non-symmetrical paths, there are many other events
to reorder. For example, if four messages a1...a4 of different
types are concurrent to node A, the permutation will lead to
4! times more paths. As some concurrent messages to every
node must still be reordered, more reduction is needed.
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Figure 6. A ZooKeeper bug with complex timings of multiple crashes (ZOOK-1). The bug is referenced in §3.2 and §7.1. This bug

labeled ZOOK-1 [13] requires 46 events including 3 crash and 3 reboot events, along with two incoming transactions, a complex concurrency

between the ZooKeeper atomic broadcast (ZAB) and leader election (LE) protocols.

• INTUITION: In this context FLYMC adapts the concept of
DPOR’s “independence” (aka. commutativity) as mentioned
in the introduction. In DPOR, two events e1 and e2 are inde-
pendent if Si+e1+e2→Sj and Si+e2+e1→Sj . That is, if e1e2
or e2e1 result in the same global state transition from Si to Sj ,
the pair of events e1 and e2 do not have to be flipped when
the system is at Si , hence reducing the number of paths to
explore. An example of independence in distributed systems
is when many concurrent messages (to a destination node)
update different variables. For example, in some distributed
systems such as ZooKeeper, the atomic broadcast protocol
might be running concurrently with the leader election proto-
col (because of a crashed node), but some of the messages in
these two protocols do not update the same variables (when
the system is at a specific state Si ), hence it is not necessary
to flip them.

• ALGORITHM: While the concept of DPOR/independence
arose from stateful model checkers (with known state tran-
sitions) [29, 38, 41, 69], adapting it to stateless distributed
checkers is not straightforward – how can a checker have
prior knowledge that Si+e1e2 and +e2e1 would lead to the
same future state Sj before exercising the events? For this,
FLYMC helps developers identify disjoint updates ahead of
time with the static analyses (more details in §4.1).

Essentially, for every message ni to a node N , our static
analyses builds the live readSet and updateSet, a set of to-
be-read and -updated variables, within the flow of processing
ni at N ’s current state. That is, our approach incorporates the
fact that ni ’s read and update sets can change as node N tran-
sitions across different states. Therefore, two messages ni
and nj to a node N are marked independent if ni ’s readSet

and updateSet do not overlap with nj ’s updateSet at the cur-
rent state Si , and vice versa. In addition, if the updateSets
of two messages intersect completely and all the variables in
the sets are in/decremented by one (e.g., a common acknowl-
edgment increment “ack++” in distributed systems), then the
two messages are marked independent/commutative.

Beyond reducing unnecessary message interleavings, a scal-
able checker must reduce unnecessary crash injections at dif-
ferent timings. 50% of DC bugs can only surface with at least
one crash injection and 12% require at least two crash events
at specific timings [59] (e.g., the complex ZooKeeper bug in
Figure 6), which exacerbates further the path explosion prob-
lem (imagine different fault timings such as ..a1a2✓A.., ..a1✓A..,
..a2✓A.., where “✓A” denotes crashing of node A). Thus, an-
other uniqueness of FLYMC’s adaptation of independence

is building the sets above for crash events. For example, if
a follower node is crashed (✁B) and the leader node A reacts
by reducing the live-nodes count (e.g., liveNodes–), then ✁B’s
updateSet will include A’s liveNodes variable.

• COMPARISON: Prior checkers adopted DPOR’s indepen-
dence, but only to a limited extent, hence are not scalable un-
der complex interleavings. For example, MODIST [81, §3.6],
CrystalBall [80, §2.2] and dBug [73, §2] only adopted DPOR
with the following rule: “a message to be processed by a
given node is independent of other concurrent messages des-
tined to other nodes”. But because they are black-box check-
ers that do not analyze the target source code, they cannot
find more independencies. On the other hand, being a white-

box checker, FLYMC exploits access to source code in to-
day’s DevOps-based cloud development where developers
are testers and vice versa [60].

SAMC is another example of a white-box checker, but de-
velopers need to manually analyze their target system code
and follow the SAMC simple principles. Hence, SAMC only
introduces cautious and rigid reduction algorithms which are
less powerful than FLYMC’s (note that in FLYMC, the con-
tent of the sets mentioned above will be automatically con-
structed through the static analysis support). For example,
FLYMC generalizes a discarded message ([58, §3.3.1]) as
an empty updateSet, such a message automatically does not
conflict with any other messages, hence not need to be re-
ordered. As another example, a crash that does not lead to
new messages (e.g., a quorum is still maintained after crash-
ing a follower node ✁B) will not be interleaved with all the
outstanding messages [58, §3.3.2] as FLYMC automatically
identifies that the crash event ✁B’s updateSet (e.g., liveNodes
in the leader node) does not conflict with updateSets of in-
flight messages.

3.3 Parallel Flips

• PROBLEM: While our previous methods reduce messages
reordering to every node, in aggregate many flips must still
be done across all the nodes. The problem is that in existing
checkers, to create a new reordered path, only one pair of
events is flipped at a time. For example, in Figure 7a, two
concurrent messages a1 and a2 are in transit to node A and
four messages b1...b4 to node B. Figure 7b illustrates how
existing approaches flip only one non-independent pair of
events at a time; for example, after path #1 a1a2b1b2b3b4, the
next path #2 is created by sliding b4 before b3, then a sub-
sequent path #3 with b4 before b2, and so on. Now, let us

http://issues.apache.org/jira/browse/zookeeper-335
http://issues.apache.org/jira/browse/zookeeper-335
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Figure 7. Parallel flips. Figures (a+b) and (c) are explained in

the “Problem” and “Algorithm” segments of §3.3, respectively.

suppose that a bug is induced by the a2a1 ordering (i.e., a2
must be enabled before a1). In the standard approach above,
it will take 4! reorderings (of the four messages to B) before
we have the chance to flip a2 before a1.

• INTUITION: We observed such patterns when analyzing
our bug benchmarks. For example, to hit the Paxos bug in
Figure 2, nodeC must receive the Prepare#2 message before
the Commit#1, but there are 8 earlier in-flight messages to
other nodes that must be reordered. Even worse, after that,
Prepare#3 message must arrive before Propose#2, but there
are 5 earlier messages to flip. Thus, the bug-inducing flips
are not exercised early.

This problem motivates us to introduce parallel flips. That
is, rather than making one flip at a time, parallel flips of pairs
of events are allowed. Parallel flips also bode well with a typi-
cal developers’ view that mature cloud systems are generally
robust in the “first order” (under common interleavings) [27]
but simultaneous “uncommon” interleavings across all the
nodes may find bugs faster.

• ALGORITHM: For the next to-explore path, we flip a pair
of two messages in every node, hence N simultaneous flips
across all the N nodes (but we do not perform multiple flips
within a node). For example, in Figure 7c, after executing
path #1 a1a2b1...b4, in path #2 we make both a2a1 and b4b3
flips. This is permissible because the in-flight messages to
node A are independent of those to node B (per our DPOR
adoption in §3.2). If no parallel flips are possible, we revert
back to single flips (e.g., only b4b2 flip in path #3).

We emphasize that parallel flips is a prioritization algo-
rithm rather than a reduction algorithm. That is, this algo-
rithm helps developers to unearth bugs faster but does not
reduce the state space. Thus, in the implementation, FLYMC
retains the single flips paths prior to the parallel flips into a
set of low-priority to-explore paths so that FLYMC stays sys-
tematic. Later when evaluating coverage completeness (§7.3),
parallel flips are not included.

• COMPARISON: We are not aware of any distributed check-
ers that employ an algorithm such as parallel flips. However,
in the software testing literature [31, 44], we found that our
approach is in spirit similar to “branch flipping” where mul-
tiple branch constraints are flipped simultaneously to cover
more corner cases faster.

4 FLYMC Static Analyses and Design

Challenges

There are several challenges in applying FLYMC algorithms
correctly in the context of distributed systems. First, we de-
scribe FLYMC static analyses that automatically extract the
knowledge about the target system (§4.1). Next, we describe
the challenges in applying the FLYMC algorithms (§4.2).
Additional correctness sketches and pseudo-code are avail-
able in an anoymized technical report [1].2

4.1 Static Analyses Support

While FLYMC’s algorithms are generic, the details (e.g., the
if-else predicates for reduction) are specific to a target sys-
tem. Furthermore, the required predicates can become quite
complex, which makes it harder for developers to derive them
manually. For this reason, we provide static analyses support
in FLYMC, which automatically builds the required predi-
cates from simple annotations provided by the developers.
For example, the static analyses automatically build readSet,
updateSet, sendSet and diskSet (§3, §4.2) containing vari-
able names specific to the target system implementation. Be-
low we describe the input and output formats.

• INPUT (ANNOTATION): To use FLYMC’s static analyses,
developers only need to annotate a few data structures: (a)
node states, (b) messages, and (c) crash handling paths. An-
notating node states that matter (e.g., ballot, key, value) is a
common practice [68, 81], for example:

public class Commit {

...

@FlyMCNodeState

public final UUID ballot;

...

}

Annotating message class declarations such as “MessageIn”
in Cassandra is relatively simple (note that we only need to
annotate the class declarations, but not every instantiation,
hence a light annotation). Crash handling paths are typically
in the catch blocks of failed network IOs, for example:

try{

...

binaryOutput.writeRecord(quorumPacket,...);

...

} catch { @crashHandlingPath ... }

In addition, our static analyses also maintains a dictionary
of disk IO library calls. On average, the annotation is only 19
LOC per target system that we have studied.

• OUTPUT: The output of the analysis is all the variable sets
mentioned above, along with the symbolic paths. For exam-
ple, for Cassandra, the analysis outputs are as follows:

2In Section 3, we have described the algorithms in a way that is easy to un-
derstand. For correctness details, we apologize that we cannot fit the entire
discussion in Section 4. We hope that our technical report addresses related
questions that might arise.
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(A) if (m.type == "PROP" && m.ballot > n.ballot)

updateSet = n.key, n.value, n.ballot

readSet = n.ballot

(B) if (m.type == "PROP_RESP" && m.resp == true &&

n.proposeCounter < majority)

updateSet = n.proposeCounter

readSet = --

(C) ...

With this output, we can track the relationship of every
two concurrent messages ni to nj to node N . For example,
if both messages are type A, they conflict with each other
and must be reordered. However, if ni is of type A while nj
is of type B, they exhibit disjoint updates and therefore, do
not need to be reordered (but they are independent only at
specific states that satisfy the if-predicates above).

To create such an output given the input annotation, our
static analyses performs basic data- and control-flow analy-
ses. The detailed steps and pseudo-code are presented in [21,
§4.2]. Our static analyses do not cover multi-variable corre-
lation and pointer/heap analysis (as not needed in our target
cloud systems so far; e.g., a message simply arrives, gets pro-
cessed, and then is deallocated).

4.2 Design Challenges

• STATE SYMMETRY: In reality, not only one variable (e.g.,
ballot number) is included in the abstracted state, which then
raises the question of which variables should be included/ex-
cluded in the abstracted information. For example, if the pro-
tocol processes the sender IDs (node addresses) of the mes-
sages, then excluding sender IDs from the abstracted event is
not safe, as this can incorrectly skip unique event reorderings.
Thus, for state symmetry, our static analyses outputs a list
of message variables that state transitions depend on, hence
cannot be abstracted (excluded). For example, for Cassandra
Paxos, neither the sender nor destination datanode IDs are
used by the protocol, hence can be safely excluded from the
abstracted information.

• EVENT INDEPENDENCE: We address two challenges in
implementing event independence.

First, as we target storage-backed distributed systems, two
messages, ni and nj to node N , might modify two different
variables that perhaps will eventually be logged to the same
on-disk file. It is not safe to consider them independent as
the same file is updated but potentially in different orders.
Thus, the two disjoint messages are truly independent only if
they are not logged to the same file, which our static analyses
tracks (§4.1).

The second challenge is similar but more subtle. In dis-
tributed settings, reordering of messages to one node cannot
be seen as a local impact only, as an arriving message can
trigger new messages. This non-local impact must be put into
consideration. For example, let us consider two messages a1
and a2 concurrently arrive at node A whose local state is
{x=0,y=0}. Now, let us suppose a1 makes x=1 and a2 makes

y=2. Here, the two messages seem to be disjoint. However, if
after processing each message, node A sends its state {x,y}

to other nodes (e.g., B), then the two messages are actually
not independent. Making them independent would lead to an
unsafe reduction. Let us consider the following sequence:

1) A’s state is x=0,y=0 4) A receives a2, hence y=2

2) A receives a1, so x=1 5) A sends x=1,y=2 to B

3) A sends x=1,y=0 to B

The example scenario shows a1 is enabled before a2, (2)
before (4). If we (incorrectly) declare them as independent,
a2a1 ordering will be skipped, therefore we will never see
{y=2,x=0} sent to B. If node B has a logic such as “if (y==2

&& x==0) panic()”, then we will miss this a2a1-induced bug.
For this reason, in addition to readSet and updateSet, we
keep track of the sendSet (§4.1), the variables that are sent
out after a message is processed. In the example, because
a1’s and a2’s sendSets overlap with their updateSets (i.e.,
x,y), a1 and a2 are not independent.

• PARALLEL FLIPS: We only allow parallel a1

b1a2

b2

a1

b1

a2

b2
no

flips if none of the events within the flips are
causally-dependent on one another (i.e., ex-
hibit a happens-before relationship). For ex-
ample, let us consider a1a2b1b2 in the first
case on the right figure, where b1 is causally-
dependent on (happens after) a1, and b2 on a2. If we care-
lessly make the two flips to a2a1b2b1, it is possible that b1
will never happen (as shown in the lower figure) because the
new ordering a2a1 that node A receives does not generate b1.
In this case, this new path will make FLYMC hang. Thus for
correctness, FLYMC’s parallel flips are backed with happens-
before analysis via vector clocks [21, §6.1].

We would like to emphasize that we provide sketches for
the correctness claims of our reduction algorithms based on
symmetry and independence [21, §4.1]. However, parallel
flips do not provide a sound reduction of state space in gen-
eral, and it is tricky to identify conditions where they might,
as also described in [21, §4.1.3]. Thus, we treat parallel flips
as a prioritization heuristic to reach buggy states earlier, but
it is based on a well-grounded intuition (§3.3) as opposed to
randomness or manual checkpoints.

5 FLYMC Design Optimizations

In wall-clock time, an execution of one path can take 8-40
seconds [58, 73]. Since one of the checker’s goals is to quickly
unearth bugs, thus, per-path wall-clock speed matters. Below
we describe our solutions to the bottlenecks.

• LOCAL ORDERING ENFORCEMENT: In a path execution,
stand-alone checkers that intercept events at the application
layer with “hooks” (e.g., dBug [73], SAMC [58], FLYMC)
must wait a non-negligible amount of time before enabling
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the next event, for two purposes: to prevent concurrency is-
sues within itself and to wait for new updated state from the
target system.

To illustrate the former, consider two concurrent incom-
ing messages a1 and a2 to node A, and the checker’s server
decides to enable a1 then a2. If the wait time is removed
between the two actions, the probability that node A acci-

dentally processes a2 before a1 increases. This is because
enable(a1) and enable(a2) actions themselves are concur-

rent messages from the checker’s server to node A whose
timings are not controlled. This wait time is too expensive
for such rare cases. To remove it, we enhance FLYMC’s in-
terposition mechanism at the target system side to enforce
local action ordering; for example, enabling a2 includes in-
formation about the previous enabled event, a1, such that at
node A’s side, a2 waits for a1, if needed.

STATE-EVENT CACHING: Although the wait time has
been removed, FLYMC must perform “history tracking” for
collecting past state-event transitions Si+ej→Sj. Here, after
enabling ej and before enabling the next event ek , FLYMC
must collect Sj from the target system, another expensive
round-trip time. To optimize this, we use the state-event his-
tory as a cache. That is, if ej is to be enabled at Si and
the state transition Si+ej already exists in the history, then
no wait is needed between enabling ej and ek . In this case,
FLYMC will automatically change its view state of the tar-
get system to Sj. This strategy is highly effective; the “cache
hit rate” reaches 90% quickly after 35 paths explored.

In summary, a checker itself is a complex system with
many opportunities for optimization. Our optimizations have
delivered further speed-ups to quickly find DC bugs (§7.1).
For interested readers, in [21, §5], we describe further ex-
planation regarding the latency analysis of various types of
checkers (OS-supported, runtime-supported, and stand-alone
checkers).

6 Implementation and Integration

FLYMC is implemented in around 10 KLOC which includes
the fault injection, deterministic replay, interposition hooks,
path execution/history management, state caching/snapshot-
ting, etc., as illustrated earlier in Figure 3. The four core al-
gorithms described throughout Section 3 are however only
2420 LOC and the hooks to a target system are only 147
LOC on average. The static analyses support is written in
1799 LOC in Eclipse AST parser for Java programs [17],
which covers many of our target systems including Cassan-
dra, ZooKeeper, and Hadoop. For LogCabin Raft and Kudu
Raft (in C++) and Spark (in Scala), we manually build the
sets (§4.1). We leave porting to other language front-end
parsers as future work.

FLYMC has been integrated with 8 popular systems: Cas-
sandra [56], Ethereum Blockchain [19], Hadoop [1], Kudu [24],
Raft LogCabin [25, 67], Spark [83], ZooKeeper [51], and a

BugName Issue# #Ev #Cr #Rb Protocols

CASS-1 [4] 6023 54 – – Paxos
CASS-2 [3] 6013 30 – – Paxos
CASS-3 [2] 5925 15 – – Paxos
ZOOK-1 [13] 335 46 3 3 LE, AB
ZOOK-2 [14] 790 39 1 1 LE
ZOOK-3 [11] 1419 41 3 3 LE
ZOOK-4 [12] 1492 24 1 – LE
SPRK-1 [10] 19623 42 – – Spark Core
SPRK-2 [9] 15262 23 – – Spark Core
MAPR-1 [8] 5505 36 1 1 TA
RAFT-1 [7] 174 21 2 2 LE, Snapshot
ETHM-1 [5] 15138 12 1 1 Fast Sync

Table 1. Bug benchmarks (complex DC bugs). The ta-

ble lists DC bugs used to benchmark checkers scalability. In the

first column: “CASS” represents Cassandra, “ZOOK” ZooKeeper,

“SPRK” Spark, “MAPR” Hadoop MapReduce, “RAFT” Raft Log-

Cabin, and “ETHM” Ethereum BlockChain. For the Protocols col-

umn: “LE” stands for leader election, “AB” atomic broadcast,

and “TA” Task Assignment. “#Ev”, “#Cr” and “#Rb” stands for

#Events, #Crashes and #Reboots that interleave to reach the bugs.

2-year old production system “X” of a large company (to
the best of our knowledge, the largest checker integration
compared to prior works). Within these systems, we model
checked 10 unique protocol implementations, such as Cas-
sandra Paxos, ZooKeeper leader election and atomic broad-
cast, Hadoop task management, Kudu Raft, LogCabin Raft
leader election and snapshot, Spark core, Ethereum fast syn-
chronization, and “X” leader election.

For reproducibility, FLYMC and some integrated systems
are open-sourced [20].

7 Evaluation

We now evaluate FLYMC in terms of speed in reproducing
DC bugs (§7.1), scalability (§7.2), coverage completeness
(§7.3), and effectiveness in finding new bugs (§7.5).

BUG BENCHMARKS: A popular way to evaluate a checker
is how fast it can reproduce (reach) a DC bug given the corre-
sponding workload. Table 1 shows the bug benchmarks that
we use, including the number of events needed to hit the bugs
(i.e., the bug “depth”). Most papers did not report bug depths
[55, 73, 81], but it is important to pick deep real-world DC
bugs for scalability evaluation. Interested readers can find the
detailed bug descriptions in our technical report. [21, §7.1].

TECHNIQUES COMPARED: We have exhaustively com-
pared FLYMC against six existing solutions as listed in Table
2,: a purely random technique (Rand), two systematic tech-
niques (m-DP and SAMC), and three hybrid systematic+random
+bounded techniques (b-DP, r-DP, br-DP). The last category
highlights how current approaches incorporate random and
bounded flips to reach bugs faster.

http://issues.apache.org/jira/browse/cassandra-6023
http://issues.apache.org/jira/browse/cassandra-6013
http://issues.apache.org/jira/browse/cassandra-5925
http://issues.apache.org/jira/browse/zookeeper-335
http://issues.apache.org/jira/browse/zookeeper-790
http://issues.apache.org/jira/browse/zookeeper-1419
http://issues.apache.org/jira/browse/zookeeper-1492
http://issues.apache.org/jira/browse/spark-19623
http://issues.apache.org/jira/browse/spark-15262
http://issues.apache.org/jira/browse/mapreduce-5505
https://github.com/logcabin/logcabin/issues/174
https://github.com/ethereum/go-ethereum/issues/15138
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Figure 8. FLYMC speed. The top and bottom figures show the number of paths to explore (in log scale) and the wall-clock time,

respectively, to find the buggy paths that make the bugs surface, as explained in Section 7.1. For the legend labels, please see Table 2. “↑”

implies that the bug is not reached after 10,000 paths. Rand numbers are averaged from five tries.

Label Technique Description

Systematic exploration techniques:

m-DP MODIST’ systematic DPOR reduction rule [81, §3.6]
as discussed in §1 and §3 (comparison segments). Note
that this reduction is also used in other checkers such
as dBug [73, §2] and CrystalBall [80, §2.2].

SAMC SAMC reduction algorithms [58, §3.3] as discussed in
the comparison segments of §3.

Hybrid systematic/random/bounded techniques:

b-DP MODIST’ bounded+DPOR rule [81, §3.6] – run
DPOR evaluation up until certain depth (i.e., #events).

r-DP MODIST’s random+DPOR rule [81, §4.5] – execute
random path on every 50 paths and then use DPOR to
evaluate the path.

br-DP Combination of the last two approaches above
(bounded+random+DPOR).

Random techniques:

Rand A purely random exploration.

Table 2. Techniques comparison. The table lists all the tech-

niques compared against FlyMC.

We do not compare with DEMETER [49] and LMC [46] as
they mainly reduce thread (local) interleavings in the context
of reducing global interleavings (§8). We also do not show
the results of depth-first-search (as used in MACEMC [81])
as DFS is extremely unscalable [81, Fig. 9].

PERFORMANCE METRICS: The primary metrics of our
evaluation are the numbers of (1) explored paths to hit a bug,
(2) total wall-clock time to hit a bug, (3) explored paths to
exhaust the entire state space of a given workload, and lastly,
(4) unique global states covered over time.

EVALUATION SCALE: Our extensive evaluation exercised
over 200,000 paths (across all compared techniques) and used
more than 130 machine days. We use Emulab “d430” ma-
chines [18] and Chameleon “compute_haswell” machines [16].

7.1 Speed

Figure 8a (in log scale) shows the number of paths explored
to hit each of the bugs in Table 1 across different methods
listed in Table 2. Figure 8b shows the wall-clock time. For
readability, in each bar group, we put FLYMC bar in the mid-
dle (striped blue), systematic approaches on the left (m-DP
and SAMC in patterned bars), hybrid and random on the right
(br-DP, r-DP, b-DP, and Rand in solid colors). The horizontal
blue markers are the height of FLYMC bars.

This evaluation method reflects a checker’s speed in help-
ing developers to reproduce hidden DC bugs. So, suppose
the users supply a workload that non-deterministically (occa-
sionally) fails, the checker then should find the buggy inter-
leaving(s) such that the developers can easily (and determin-
istically) replay them. Note that some methods fail to find the
buggy paths after exploring 10,000 paths (marked with ↑ in
Figure 8a). We stop at 10,000 paths to prioritize other evalu-
ations. From the figure, we make the following observations:

(a) Within the systematic group, MODIST’ DPOR (m-DP)
is not effective for 5 of the bugs (CASS-1, ZOOK-1, SPRK-1,
MAPR-1, and RAFT-1), which is due to the limitations of black-
box methods in pruning redundant paths.

(b) SAMC is faster than m-DP up to 25×. However, for two
of the bugs (CASS-1 and ZOOK-1) SAMC cannot reach them
within 10,000 paths and for the other two cases (MAPR-1 and
RAFT-1) SAMC is relatively slow. Again, this happens because
SAMC does not have any static analysis support. Instead, devel-
opers need to manually analyze and implement their own re-
duction algorithms by following the SAMC principles. There-
fore, in practice, SAMC might miss some potential reduc-
tions. Furthermore, it mainly focuses on reducing unneces-
sary crash timings, hence does not scale for workloads with
many concurrent messages.

http://issues.apache.org/jira/browse/cassandra-6023
http://issues.apache.org/jira/browse/zookeeper-335
http://issues.apache.org/jira/browse/spark-19623
http://issues.apache.org/jira/browse/mapreduce-5505
https://github.com/logcabin/logcabin/issues/174
http://issues.apache.org/jira/browse/cassandra-6023
http://issues.apache.org/jira/browse/zookeeper-335
http://issues.apache.org/jira/browse/mapreduce-5505
https://github.com/logcabin/logcabin/issues/174
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Figure 9. Many choices make random techniques ineffec-

tive. For model checking complex protocols such as Paxos CASS-1,

the figure shows how many inflight messages (y-axis) that can be

chosen for every to-enable event (x-axis) within a path execution.

For example, for pick #10 (x=10), there are 9 events to choose from

(y=9). The figure shows that there are up to 10 choices when mak-

ing a pick, hence random techniques are not effective for finding

bugs in “deep” complex protocols and workloads.

(c) Random is random. Rand is the slowest method for 3 of
the bugs, but it is faster than m-DP and SAMC in 4 and 1 other
cases, respectively. In the latter cases, the degree of concur-
rency is low (e.g., to enable an event, random only needs
to pick 1 out of 3 outstanding events), hence the probability
that the “interesting” event is picked is high. However, in the
former cases (more complex concurrency), random is not ef-
fective as there are too many choices and it blindly reorders
non-interesting interleavings. For example, for CASS-1, Fig-
ure 9 shows how many inflight messages (y-axis) that can be
picked (up to 10 choices) for every to-enable event (i.e., for
every pick) within a path execution (x-axis). This highlights
how complex workloads/interleavings make random-hybrid
techniques (r-DP and br-DP) not fast enough.

(d) Bounded DPOR (b-DP) approximately has the same
speed as random-hybrid ones. Interestingly, for bug MAPR-1,
the exploration completes, but the bug was not found (“X” in
the figure). This shows a weakness of bounding the number
of events to flip. Note that with bounded+random (br-DP) the
randomness might shuffle the critical events first.

(e) Finally, FLYMC is the fastest among all methods. In
our bug benchmark, we have not found any other checker
that wins over FLYMC. For the most complex bug, CASS-1,
FLYMC can find the buggy path in less than 2500 paths. In
overall, FLYMC is faster at least by 16× on average and up
to 78× (“at least” because of the non-finished explorations,
labeled with “↑” in Figure 8a). Sometimes “significant state-
space reduction does not automatically translate to propor-
tional increases in bug-finding effectiveness” [49, §5.3], how-
ever, we believe our results show that it is possible to stay
systematic and increase bug-finding effectiveness with more
advanced reduction and prioritization strategies.
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Figure 10. FLYMC scalability. (As explained in §7.2).

Now we discuss the wall-clock speed in Figure 8b. As dis-
cussed in Section 5, for example in CASS-1, the per-path ex-
ecution time is around 40 seconds in SAMC, 6 seconds in
total in FLYMC, and 2 seconds (plus initialization time) in
MODIST. Overall, per our design optimizations (§5), FLYMC
is now 28× faster on average (up to 158×) compared to all
methods. We do not show Rand in Figure 8b because we are
comparing specific design implementations.

7.2 Scalability

To analyze why non-FLYMC algorithms cannot or are slow
to hit some of the deep bugs above, we plot a different type of
graph in Figure 10. Here, the x-axis represents the number of
remaining events to hit the bug. For this, we control the “path

prefix,” i.e., an initial subset of the buggy path. The maximum

value in the x-axis represents the total number of events to
hit the bug without any prefix (as in the “#E” column in Ta-
ble 1). For example, for reproducing CASS-1 (Figure 10a),
the workload generates a total of 54 events. Controlling path
prefix means that the checker executes in deterministic or-
der some of the earlier events (the prefix) and let the rest be
reordered. For example, in Figure 10a, with x=30, we first
enable the first 24 initial events and then let the checker re-
order the remaining 30 events.

The y-axis shows the number of paths explored until the
bug is reached given the remaining events. For instance, in
Figure 10a, at x=26, MODIST’s m-DP must explore 163 paths
to hit the bug, but SAMC and FLYMC are able to hit the bug
in 55 and 27 paths respectively. With more remaining events
to reorder (higher x), then more paths need to-be explored
(higher y), i.e., the larger the path explosion problem will be.

Essentially, the graphs in the figure show how FLYMC is
more scalable than other approaches. For example, in CASS-1
(Figure 10a), at x=32, SAMC already explodes to more than
10,000 paths. On the other hand, FLYMC can find the buggy
path in 2318 paths without any prefix (at x=54).

http://issues.apache.org/jira/browse/cassandra-6023
http://issues.apache.org/jira/browse/cassandra-6023
http://issues.apache.org/jira/browse/mapreduce-5505
http://issues.apache.org/jira/browse/cassandra-6023
http://issues.apache.org/jira/browse/cassandra-6013
http://issues.apache.org/jira/browse/cassandra-6023
http://issues.apache.org/jira/browse/cassandra-6023
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Figure 11. State coverage. The figure shows the number of

protocol states (y-axis) covered over explored paths (x-axis), as ex-

plained in §7.3a. A unique protocol state is stored as a hash value

of a global state S (S is described in §3.1).

For ZOOK-1, our SAMC exploration results are different
compared to the one reported in the SAMC’s paper [58].
Upon our conversation with the SAMC developers, there are
two reasons for this difference. First, SAMC includes all the
initialization events to reach the initial state S0 (e.g., initial
leader election to reach stable cluster), which FLYMC ig-
nored. Second, in our checker, we implemented a proper vec-
tor clock, while SAMC did not, which causes our checker
to detect more concurrent chain of events. Therefore, in our
experiment, SAMC is no longer able to hit the bug under
10,000 paths. However, it does not take away SAMC’s con-
clusion that SAMC is still an order magnitude faster than
MODIST’s DPOR algorithm.

7.3 Coverage

For this evaluation, parallel flips algorithm is disabled be-
cause it is a prioritization algorithm. Hence, it does not affect
all of the coverage evaluation.

(a) State coverage: We have mainly measured FLYMC’s
speed in finding buggy paths in prior sections. Another form
of evaluation is the speed to cover unique protocol states over
the explored paths. Figure 11 (similar to the format of Figure
10 in [81]) shows the Cassandra Paxos protocol states cov-
ered (in y-axis) under a 3-update Paxos workload in CASS-1
within the first 10,000 explored paths (in x-axis). We make
the following observations.

First, DFS is the worst among all (flat line). SAMC and
mDPOR are faster but the growth rate is small. Random is
the fastest, and for this reason, checkers sometimes mix their
algorithms with random walks (see [81, Figure 10]), but un-
fortunately reduce their systematicity. So, random is fast in
state coverage, but its non-systematic nature does not guar-
antee a buggy path to be found (e.g., random fails to reach
three bugs in Figure 8a).

Second, on the other hand, FLYMC does not sacrifice sys-
tematicity and is only 3× slower than random. Being both

fast and systematic is feasible. The figure also shows that
coverage growth rate reduces over time (i.e., more paths to
explore but they do not always lead to new unseen states).

(b) Complete coverage: Another question is whether the en-
tire state space in a given workload can be covered, i.e., there
are no more new unique states to explore. We performed this
experiment for Cassandra Paxos and Kudu Raft workloads as
shown earlier in Figure 1 on page 2, which we now elaborate.

FLYMC successfully exhausts the state space for all the
workloads, with one to three concurrent key-value updates in
Kudu Raft and Cassandra Paxos (Raft-1 to -3 and Paxos-1

to -3) within a reasonable time budget, as shown in Figure
1. The most complex one, Paxos-3, requires FLYMC to ex-
haust around 50,000 paths (1 machine week). Raft-3 is a
much simpler case than Paxos as Raft only allows one leader
node (per table/partition) to coordinate concurrent updates;
for example, three coordinators A, B, C in Figure 2 (on page
3) updating the same key/partition is not allowed in Kudu
Raft. Given this simplicity, Raft only needs two rounds, un-
like Paxos’ three rounds. For this reason, Raft search space
is much smaller than Paxos.

MODIST’s DPOR and SAMC cannot finish the exploration
under 10,000 paths. They do not scale well under these work-
loads for the following reasons.

MODIST’s inter-node-independence DPOR algorithm fo-
cuses on taming the N -induced explosion (e.g., checking 3
nodes will not explode much compared to 2 nodes). How-
ever, under a more complex workload where the number of
concurrent messages to each node increases, this inter-node-
independence DPOR algorithm does not scale (for example,
Raft/Paxos-2/3 in Figure 1). What is needed is the intra-
node message independence.

SAMC implements such an intra-node message indepen-
dence. For example, in a single Paxos update (Paxos-1), the
ack++ received by the coordinator in each round of the Paxos
three stages are considered commutative/independent.Hence,
SAMC is more scalable than MODIST. However, SAMC’s
other algorithms such as crash independence and symmetry
do not work in no-crash workloads.

Under two concurrent updates (“Paxos-2” in Figure 1), the
path exploration explodes significantly in all the checkers.
This is because in a single update, the three Paxos rounds
(prepare, propose, commit) are serialized, but under two up-
dates, each round of the first update can interleave with any
round of the second update.

(c) Systematic coverage: We use the same sense of “system-
atic” that is used with concurrent programs [42, 77], where
it refers to exploring the state spaces of concurrent processes.
Our FLYMC reduction algorithms are systematic in that they
cover all states relevant to observable events, i.e., the inter-
cepted messages in distributed systems. These algorithms do
not skip any interleavings that would lead to new unique
states (more correctness sketches in [21, §4.1]). We want
to emphasize that this systematic property follows in prin-
ciple from correct identification of communication and state
symmetry and event independence, which is supported by

http://issues.apache.org/jira/browse/zookeeper-335
http://issues.apache.org/jira/browse/cassandra-6013
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Figure 12. Path explosion and reduction. The figure is explained in §7.4a. The y-axis represents the to-explore paths over time. Figure

(e) shows that FlyMC reduces the path explosion problem by two orders of magnitude from MoDist’s DPOR and SAMC.
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0% 25% 50% 75% 100%
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Figure 13. % of removed and deprioritized paths by each

algorithm. The symmetry and event independence areas repre-

sent % of reduced paths, while the parallel-flips are represents % of

deprioritized paths. The figure is explained further in Section 7.4b.

FLYMC’s static analyses (which we assume are correct). As
experimental evidence, we collected all unique global states
(compressed to hash values) explored by depth-first search
(DFS) and MODIST’s DPOR for Raft-1, -2, and Paxos-1 ex-
amples. When compared with the explored states in FLYMC,
we found that FLYMC had not missed any unique states.
Note that we could not compare more complex workloads
since the non-FLYMC techniques take too long to complete.

7.4 Per-Algorithm Effectiveness

In this section, we evaluate the effectiveness of each individ-
ual algorithm by showing the reduced paths over time and
the ratio of reduced paths per algorithm.

(a) Reduced paths over time: Figure 12 highlights the com-
bined power of FLYMC algorithms, using CASS-1 as a spe-
cific example. Figure 12a (in log scale) depicts the number of
to-explore paths over time. The path explosion in the begin-
ning, just after x=0, shows the many possible interleavings
generated after the first path is exercised. Let us imagine
that the first path contains 14 all concurrent events, a DFS
checker would generate 14! new paths. However, not all of
them need to be exercised, because they are removed by the
individual reduction algorithms.

The highest line in Figure 12a reflects the number of gen-
erated paths by a naive depth-first-search (DFS) algorithm
without any reduction algorithm. The top region in Figure
12a depicts the number of paths reduced by MODIST’s DPOR
algorithm, roughly 3 orders of magnitude reduction from
DFS, hence its popular usage in other checkers [73, 80]. Next,

the middle region shows that SAMC slightly reduces the ex-
plosion (SAMC is not highly effective for this bug, as ex-
plained in §7.1-7.2).

Figures 12b-d depict the individual reductions by state
symmetry, event independence, and parallel flips, each re-
duces the explosion by almost an order of magnitude. Ulti-
mately, Figure 12e shows that all FLYMC algorithms collec-

tively provide two orders of magnitude of reduction in the
CASS-1 Paxos workload.

(b) Ratio of reduced paths per algorithm: We plot Fig-
ure 13 to show the effectiveness of the individual FLYMC
algorithms. Here, the x-axis represents the ratio of paths re-
moved (by symmetry and event independence) and deprior-
itized (by parallel flips) from all the paths. This figure fo-
cuses on displaying two bugs from our benchmark with the
most complex workloads. The graph essentially shows how
all FLYMC algorithms successfully complement each other.
We can also see that for different workloads, certain algo-
rithms are more effective than the others.

For example, parallel flips are effective for CASS-1 (45%)
because this workload (three Paxos updates) generates a high
degree of concurrency (e.g., up to 9 outstanding events at
a given time) and the important flips are far from the end
of the queue, which parallel flips address (as illustrated ear-
lier in Figure 7). Symmetry also works best in CASS-1 (33%)
as the workload exercises replication-based protocols involv-
ing multiple worker/follower nodes, which are automatically
considered symmetrical in FLYMC. Our event independence
algorithm is effective in ZOOK-1 (43%) as the messages in
this workload update different sets of variables (e.g., leader
election messages and snapshot messages that touch differ-
ent sets of variables) and, as this bug requires three crashes
to surface, reducing unnecessary crashes is effective.

7.5 New Bugs

Finally, our last evaluation tests whether FLYMC can find
new bugs. For this, we integrated FLYMC with (1) a recent
stable version of Cassandra and (2) ZooKeeper. (3) a 2-year
old proprietary system; the proprietary system is a produc-
tion system that supports five other cloud services within the
company (akin to how ZooKeeper supports HBase, Yarn, and

http://issues.apache.org/jira/browse/cassandra-6013
http://issues.apache.org/jira/browse/cassandra-6013
http://issues.apache.org/jira/browse/cassandra-6013
http://issues.apache.org/jira/browse/cassandra-6013
http://issues.apache.org/jira/browse/zookeeper-335
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CASS-5 : (1) A client submits Paxos Write-1 (W1) to node A with a col-
umn in key K’s row. (2) Node A sends W1’s prepare messages and pro-
pose messages, accepted by all nodes A, B, and C. (3) Node A sends
W1’s commit messages. (4) Node C crashes before accepting the com-
mit message. (5) Nodes A and B accepts the W1’s commit messages. At
this point, A and B have stored W1 locally. (6) Node C reboots. (7) An-
other client submits Paxos Write-2 (W2) to A, updating another column
in key K’s row. (8) Node A sends W2’s prepare messages (then propose
and commit messages), accepted by all the nodes. At this point, Paxos
nodes incorrectly have inconsistent data; A and B store W1-2, but C only
stores W2 locally. The read repair did not happen during W2’s prepara-
tion. Thus, if a client reads K from C, she would get an inconsistent data
(missing W1’s update).

Figure 14. Another DC Bug in Cassandra Paxos. The

list above summarizes (simplified) the total order of 48 messages

including one crash and one reboot at specific timings. A longer

list is presented in our technical report.

other cloud systems). We found 10 new bugs in total, all con-
firmed by the developers. The detailed descriptions of all the
new bugs can be found in our extended report [21, §7.5].

For Cassandra, we successfully discovered 2 new bugs
that require 2 and 3 concurrent Paxos updates. One of the
bugs also requires a crash and a reboot to be injected. Fig-
ure 14 summarizes the complex interleavings (total ordering
of events) needed to hit this bug. We have communicated
these two bugs to the developers and they have confirmed
that those two bugs are real issues which will be fixed.

For ZooKeeper, we model check its “reconfiguration” fea-
ture, which allows ZooKeeper cluster to elastically grow and
shrink while serving foreground requests without any down-
time, hence a complex feature. FLYMC successfully discov-
ered 3 new bugs. The first bug reveals that the developers’
prior fix to an old DC bug was not robust enough, that there
is another interleaving that makes the old bug surface. The
second bug was reported to appear once every 500 unit test
cycles. With FLYMC, we help the developers pinpoint the
exact buggy path to reproduce the bug deterministically. The
third bug is about two threads in a single node entered a dead-
lock due to a specific incoming message timing and a local
thread operation that was managing the node quorum.

For the proprietary system, FLYMC successfully discov-
ered 5 new critical bugs that have significant impacts includ-
ing unavailability (e.g., no leader is chosen) and data incon-
sistency. The bug depths range from 9 to 30 events.

8 Related Work

We now discuss the many efforts by the systems community
in making distributed systems more reliable.

MODEL CHECKING: The main issue that these checkers
try to overcome is the state-space explosion challenge. Table
3 summarizes the difference between many state-of-the-art
checkers. First, MACEMC [55] combines DFS and random
walk biased with weighted (prioritized) events manually la-
beled by testers (“Ran”X in Table 3).

■ 2 Ran Ind Sym Prio ✚N
MACEMC[55] X X

CrystalBall [80] X X

dBug [73] X X

MODIST [81] X X X 1

SAMC [58] X X X ≤ 3

FLYMC XS X+ X+ X ≤ 3

Table 3. State-of-the-art DC checkers. The table is de-

scribed in §8. “■” denotes a black-box approach; “2” a white-box

approach; “Ran” random; “Ind” independence; “Sym” symmetry;

“Prio” prioritization; “✚N+N ↑” number of crashes and reboots in-

jected; “XS” static analyses support; and “X+” more powerful.

Subsequent works, CrystalBall [80], MODIST [81], and
dBug [73], began to adopt DPOR independence [38] in a
black-box manner without domain-specific knowledge (“■”X
and “Ind”X), hence do not scale well for complex workloads.
The ��N column in Table 3 shows that prior checkers did not
interleave crash timings.

SAMC [58] enhances DPOR’s independence by exploit-
ing white-box information and employs symmetry-based re-
duction (“2”X and “Sym”X). However, SAMC has three
weaknesses. First, the domain-specific algorithms are written
manually without any static analysis support, hence SAMC
only introduces cautious reduction so that it does not acciden-
tally skip interleavings that would lead to unexplored states.
Second, SAMC primarily reduces crash interleavings, hence
do not scale for complex messages (e.g., 3 concurrent Paxos
updates). Third, SAMC does not consider any prioritization
strategy.

Compared to the others, FLYMC employs more advanced
and powerful (“X+”) independence- and symmetry-based re-
ductions and a well-grounded prioritization strategy (“XP ”),
backed by static analyses support (“XS”). Hence, FLYMC
scales for complex workloads including multiple crashes.

There are other checkers such as DIR [49] and LMC [46]
but they mainly address the decoupling of local and global
explorations (orthogonal to FLYMC). Hence, they are not
shown in Table 3 because none of the bugs in our bench-
marks require local thread interleavings. Other practical check-
ers, such as Jepsen [23] and Namazu [26], do not introduce
new reduction algorithm. Instead, they mainly depend on
random-walk and randomly injecting network partition or
failures to detect bugs. Finally, others suggested paralleliz-
ing DPOR by distributing the path executions across many
worker nodes [74, 82]. This can be engineered into FLYMC.

Techniques in distributed checkers above are similar to
those in “local” concurrency checking, e.g., symmetry [32,
75], disjoint-update independence [34, 42], property-driven
pruning [76], and multiple branch flips [44], but the details
are vastly different.

http://issues.apache.org/jira/browse/cassandra-x
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Lastly, one limitation that stateless distributed model check-
ing has is that this technique only provides correctness con-
fidence over the tested workloads that are specified by the
developers.

VERIFICATION AND TESTING: There is a growing body
of work on new verifiable programming frameworks for dis-
tributed systems (e.g., IronFleet [50], PLang [36], Verdi [79]).
Such methods are more formal than checkers, but the devel-
opers must write proofs that are typically in the thousands
of lines. Compared to verification and testing [47, 52, 53] or
bug-finding tools [61, 62], stateless model checking is often
considered to be in “between” [30, 43]; for example, check-
ers deliver higher coverage than testing/bug-finding tools but
lower than verification, but the development cost is cheaper
than verification but higher than testing.

POST-MORTEM DIAGNOSIS: Post-mortem methods such
as record-and-replay [40, 63, 64] and flow reconstruction
[71, 84] are popular methods to reverse engineer failures.
However, tracing is often done in a coarse-grained way [65,
70, 72], thus not all DC bugs can be reconstructed easily in
post-mortem analysis. ZooKeeper developers shared with us
that occasionally more than ten of iterations of log changes
over a long period of time is required to replay DC-related
failures at customer sites.

9 Conclusion

For model checking complex distributed concurrency, FLYMC
shows that it is possible to be fast and scalable while staying
systematic. This makes stateless distributed model checking
a more practical approach. More exciting challenges are on
the horizon as no checkers to date completely control the
timings of all non-deterministic events such as messages,
crashes, timeouts, local thread schedules, as well as disk IOs
[59]. We hope FLYMC motivates more advancements in this
research space.
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