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Abstract—We introduce an ecosystem of contention mit-
igation supports within the operating system, runtime and
library layers. This ecosystem provides an end-to-end request
abstraction that enables a uniform type of contention mitigation
capabilities, namely request cancellation and delay prediction,
that can be stackable together across multiple resource layers.
Our evaluation shows that in our ecosystem, multi-resource
storage applications are faster by 5-70% starting at 90P (the
90thpercentile) compared to popular practices such as specula-
tive execution and is only 3% slower on average compared to
a best-case (no contention) scenario.

Index Terms—Distributed Systems; Resource Management;
Performance and Reliability; Fault Tolerance; Cloud Comput-
ing

I. INTRODUCTION

Today, many varieties of products are advertised not only

with traditional metrics such as throughput and average

latency, but tail latency as well (e.g. Xms latency guaranteed

at the Y th percentile). In cloud deployments, resource sharing

is a de-facto configuration and contributes as a dominant

factor of unpredictable latency. Contention appears in many

different resource layers, all directly impacting software sys-

tems that use multiple resources, including storage systems.

Let’s take distributed cloud storage such as key-value

stores as an example. They require CPUs to process user

requests, memory to cache the data, lock resources to imple-

ment concurrent data sharing correctly, and storage devices

to fairly and promptly serve their I/Os. However, CPUs might

not be instantly available due to process/VM contention, load

imbalance or task rebalancing across cores [1–8]; memory

access can be halted by the language runtime for heap

reorganization [9–14]; foreground locks might be used by

background management operations such as compaction,

flushing and migration [15–18]; and I/Os can be delayed

under bursty workloads [19–25]. Another challenge on top

of all of these is that unlike compute jobs that run for

seconds, the small latency tail that storage users expect is at

the millisecond granularity (e.g. 5ms at the 99th-percentile

latency).

Guaranteeing highly stable latencies in multi-resource sys-

tems including distributed storage is still an open-ended chal-

lenge. In this context, we studied and reviewed popular con-

tention mitigation scenarios, from application modification,

speculation, replica selection and resource-level optimization,

and evaluate them on multiple dimensions such as simplicity,

efficiency, reactivity and coverage. We found that while each

of these methods has advantages in multiple dimensions, they

have inherent limitations that cannot be fixed within its own

category (more details in Section II).

We pose the following question: Is there a strategy that

can combine the best of all the worlds, e.g. a strategy that

can keep the simplicity of speculation, the efficiency of

application modification, the reactivity of resource optimiza-

tion, and the coverage of replica selection? This question is

fundamentally hard to answer when existing methods solve

the problem either entirely in the applications or in the

individual resource managers (e.g. in OS, runtime or library).

We introduce LIBROS, an ecosystem for contention mit-

igation with supports from library, runtime, and operating

system layers. The principle behind our ecosystem is that

while distributed applications are responsible for the retry

mechanisms (as they know where data replicas are), resource

managers should help notify applications when resources are

highly contended. In this “app-OS” co-design, neither the

application nor the resource managers attempt to solve the

problem entirely by itself.

The key ingredient in LIBROS is enabling a uniform type of

support that can be adopted across multiple resource layers.

For this, LIBROS first introduces an end-to-end “request”

abstraction that flows through multiple resource layers. The

concept of request, including its corresponding deadline and

cancellability, becomes a first-class citizen. In mitigating tail

latency, resource managers now operate on request level as

opposed to opaque stream of bytes. Around this abstraction,

resource managers can build a stackable support, namely

request cancellation and delay prediction, for the individual

resources that they manage.

To adhere on simplicity, our approach does not modify

resource-level policies such as scheduling and allocation de-

cisions. Instead, given a particular QoS policy that a resource

manager employs, we build a delay predictor that estimates

how long an incoming request will be delayed in that layer.

Hence, all the resource layers in the LIBROS ecosystem can

provide a new, uniform capability: when a request arrives at

a resource layer, the resource manager predicts the delay in

that layer, and if the delay violates the request deadline, the

layer will cancel this (cancellable) request, knowing that the
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Fig. 1. Multi-layer tails. The figures, in CCDF format, show
tail latencies due to (a) CPU contention, (b) GC pauses, (c) lock
unavailability, and (d) all combined.

application has another replica to go to (§III).

To achieve fast reactivity, resource managers send cancel-

lation notifications that inform the application to quickly react

to the delay by sending speculative retries to other replicas.

At the same time, efficiency (no extra load) is achieved

because the original request has been automatically cancelled

by the contended resource layer. Finally, for coverage, we

build the capability above for three major often-contended re-

sources. Specifically, we present ETOS, an operating system

with CPU contention prediction, ETR, a Java runtime that

notifies when requests will be stalled due to heap garbage

collection, and ETLIB, a library that throws an exception

when a lock cannot be required within the deadline. (“ET”

implies end-to-end tail mitigation support.)

In building LIBROS, the main challenge is creating two

new capabilities in resource layers: prompt cancellation no-

tification and accurate delay prediction (§IV-VI). In our

implementation, these capabilities are written in 2300, 1000

and 250 LOC in ETOS, ETR and ETLIB, respectively (will

be open sourced). To make applications benefit from these

capabilities, LIBROS exposes simple APIs, e.g., we modified

Cassandra and MongoDB only in 120 and 50 lines, respec-

tively. Our evaluation shows that LIBROS is faster by 5-70%

starting at 90P (the 90thpercentile) than popular practices

such as speculative execution and is only 3% slower on

average compared to the “best” (no contention) scenario.

II. BACKGROUND AND MOTIVATION

This section provides a concrete example of tail latencies

due to multiple resource contention and reviews the major

solutions in the last decade.

A. Multi-Resource Contention

Let us consider the following scenario. As a request arrives

to a server, it might face a CPU contention; it cannot be

delivered to the server application until the OS allocates a

CPU for the application [1–8]. When the application receives

the request, and if the code is written in a managed language

such as Java, the request is usually converted from byte

stream to an object (e.g. “R = new Request(bytes)”) which

can stall if the runtime is garbage-collecting the heap [9–14].

If not, the application can continue to process the request

TABLE I
State-of-the-art (§II-B) vs. LIBROS §III-B) benefits.

App-Sim
plic

ity

Efficiency

Reactiv
ity

RL-Sim
plic

ity

Coverage

App. modification —
√ √ √

—

Speculation
√

—
√ √ √

Replica selecion
√ √

—
√ √

Resource optimization
√ √ √

— —

LIBROS
√ √ √ √

Major∗∗

which is usually done in a lock protected function (e.g.

“synchronized processReq()”) which can incur a long delay

when a heavy background activity is currently holding the

same lock [15–18].

Fig. 1a, illustrating a CPU contention, shows the latency

CCDF (complementary/reverse CDF) of Cassandra requests

when the server process is competing over the same CPUs

with other processes. The “+Noise” line shows around 15%

of the requests experiencing tail latencies (vs. the stable

“Best” line without CPU noises). Fig. 1b shows the same

requests being stalled, not by CPU noises, but by Java

garbage collection (GC) roughly 8% of the time due to other

bulk requests that (de)allocate memory intensively. Likewise,

Fig. 1c depicts a contention when some of the requests have

to wait for a lock held by a background thread. Finally,

Fig. 1d shows that when all the contentions are compounded,

it will cause a larger tail area (25%). In fact, we observe

a compounded effect where GC takes longer time because

it is contending with the other CPU noises. Given this

observation, it is hard to guarantee extreme stable latencies

in multi-tenant, multi-resource storage systems.

B. State of the Art

The last decade has witnessed many novel solutions

proposed to tame the resource contention problem, which

we classify into four general categories: application-level

modification, speculation, replica selection and resource-level

optimization (Table I). We review their pros and cons in five

axes: “application simplicity” implies no intrusive changes

to the application; “efficiency” denotes no extra load (i.e.

no speculative backup requests); “reactivity” means rapid

reaction to latency perturbation in millisecond windows;

“resource layer (RL) simplicity” suggests no heavy changes

made in the resource manager (e.g. no policy changes);

and finally “multi-resource coverage” means successful tail

mitigation across multiple resource layers.

APPLICATION-LEVEL MODIFICATION re-architects tail-

prone applications with a better computation and data man-

agement. For example, numerous key-value storage designs

have been proposed for reducing contention between user

and management operations or for handling workload skew



and cache inefficiencies [15–18, 26–31]. As shown in Table I,

while it is efficient and reactive and does not change resource-

level policies, it requires application redesign and does not

cover contention outside the application.

SPECULATIVE EXECUTION treats the underlying system as

unchangeable and simply sends a backup request (speculative

retry) after some short amount of time has elapsed [32–35].

Many user-level storage adopt speculation for its simplicity

and end-to-end coverage, but it causes extra load (i.e. spec-

ulative retry after waiting for the Pth-percentile latency will

lead to (100−P)% backup requests).

REPLICA SELECTION predicts ahead of time which repli-

cas can serve requests faster, often done in a black-box

way (ease of adoption) without knowing what is happening

inside the resource layers [36–38]. This requires detailed

latency monitoring and expensive prediction computation for

increasing accuracy. Most of the time, the prediction is only

refreshed sparsely (e.g. every few minutes) [39]. As a result,

it is not reactive to bursty contention that can (dis)appear in

sub-second interval.

RESOURCE-LEVEL OPTIMIZATION eliminates the tail-

inducing causes in the resource layer, for example, with better

thread/task scheduling [1–7], storage layer optimization [40–

44], and GC optimization [9–14].

While they are powerful, they come with the cost of modi-

fying resource-level policies (scheduling, allocation, etc.) and

only cover contention in their respective resource layers (e.g.,

cutting the tail in the OS storage stack [43–46] does not help

user-level storage in an end-to-end way).

III. LIBROS

We now introduce LIBROS, an ecosystem of contention

mitigation supports from library, runtime and operating

system layers.

A. Design Overview

As mentioned in the introduction, it is fundamentally

challenging to maintain all the benefits of the aforementioned

techniques if we attempt to solve the tail latency problem

only entirely in the application or resource layers. Within

the LIBROS ecosystem, both application and resource levels

work hand in hand. Fig. 2 illustrates the LIBROS ecosystem,

showing how a request flows from client to server through

multiple resource layers in the operating system, runtime and

library. To achieve all the five goals in Table I, LIBROS

consists of five essential elements.

A) AN END-TO-END STORAGE request ABSTRACTION

(Fig. 2a) connects all the resource layers together in miti-

gating tail latency. Currently, operating systems, runtime and

libraries are often oblivious to the end-to-end request context.

They operate on abstractions such as streams, packets and

functions that are hard to map to the notion of “user request”

and its latency sensitivity. With the prevalence of interactive

services, user request should be a first-class citizen. request

acts as a unifying abstraction for scattered resource layers.
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Fig. 2. LIBROS design (§III-A). The picture depicts five impor-
tant elements of LIBROS: (a) end-to-end request abstraction, (b)
deadline information, (c) request cancellation, (d) per-resource delay
prediction, and (e) guided retry. Every resource layer adds (f) a
uniform and stackable predict-server-or-cancel capability.

B) DEADLINE AWARENESS (Fig. 2b) is added to the

resource layers through which request flows. The impor-

tance of deadline information has been highlighted many

times [20, 47–50] and deadline-aware resources have been

proposed such as in the TCP or block layer [43, 51, 52] but

usually the awareness is only contained within the layer. With

request, user’s deadline information can be simply added

and automatically forwarded across layers.

C) REQUEST CANCELLATION (Fig. 2c) is now supported

in resource layers. That is, when replicas are available,

user-level storage can tag requests as cancellable such that

when the deadline cannot be met by a particular layer,

the layer is given the liberty to cancel the request. The

concept of cancellable tasks or requests is common in real-

time community [53–55], but has not been fully deployed

in many standard systems. Likewise, request cancellation is

an essential mechanism that will notify applications that a

particular resource in the datapath is currently contended.

Google also promoted the efficiency of cancellable requests

[56], but the article only described cancellation that is done in

a user-level file system, while in our work, we advocate every

major resource layer to be aware of deadlines and capable of

cancelling requests.

D) PER-RESOURCE DELAY PREDICTION (Fig. 2d) can be

now built in every major resource layer for making decision

to serve or cancel every arriving request. The decision is

made based on the request deadline and the current con-

tention level inside the resource. The prediction ideally must

be precise. Fortunately, a high precision is possible because

the predictor is built inside the resource layer, hence has the

full view of the contention inside the resource. For examples,

ETOS is capable of measuring CPU contention, ETR of GC

duration, and ETLIB of lock delays.

E) GUIDED RETRY (Fig. 2e) is now possible to be imple-

mented by the application. Unlike timeout-based speculative

retry that must wait for a certain time before sending backup

requests, with LIBROS, the application can trigger retries as

guided by the cancellation notification it receives from one

of the resources.

With all the elements above, every resource layer can

operate on a uniform and stackable support (Fig. 2f)—for



every request, predict the current delay, and cancel the request

if the deadline cannot be met, or otherwise serve and forward

the request to the next resource layer (if applicable). For

every layer to know the remaining deadline since the request

was sent (“remDL” in the figure), the request structure also

contains the send time. This way, not all resource layers have

to support prediction and cancellation, but only the often-

contended major ones (more in §III-D).

B. Goals and Non-Goals

LIBROS design achieves all the goals in the following

ways (as summarized in Table I). (1) The application remains

simple because its job is straightforward: instantiate requests

and perform speculative retries upon receiving cancellation

notices. (2) Our approach is efficient because delayed re-

quests are cancelled before being served, hence no extra load.

(3) We achieve fast reactivity because the predictors we build

always check the current delay, hence capable of adapting to

millisecond burstiness. (4) We also maintain resource-level

simplicity because we do not modify the original QoS policy,

which is considered the most complex part of a resource

layer, but rather we only need to build a predictor around it by

reverse engineering the code. (5) Finally, we argue that fun-

damentally LIBROS provides sufficient coverage, especially

when major resource layers (e.g. CPU/thread, memory, and

disk management) adopt our method in supporting prediction

and cancellation (for this reason we put “Major∗∗” instead

of a complete “
√

” in Table I).

We acknowledge that there are other sources of tail la-

tencies (data skews, bad application load balancing policies,

etc.). For this reason, applications should still enable timeout-

based speculative retry to anticipate “unknown” root causes.

Finally, we target replicated storage systems and assume

scenarios where client and server machines live in the same

data center (e.g. for data locality); data-center clock synchro-

nization has been solved to nanosecond level [57].

C. APIs

The LIBROS ecosystem exposes simple APIs to applica-

tions. Due to space contraints, we decide to put API details to

our supplemental material [58].1 In short, we provide simple

OS, runtime and library-level APIs such as struct urequest,

reqcreate(), reqsend(), reqrecv(), and notifyrecv(), for

sending user requests (along with deadline infromation) and

receiving cancellation notifications.

D. Target Resource Layers and Applications

This paper shows the efficacy of LIBROS for major sources

of contention in three resource layers: CPU contention in the

OS layer, GC pauses in Java runtime, and synchronization

1We fully and completely acknowledge that that our extended report [58]
will and should not be accounted in the review process. We provide a link to
the report simply for interested readers who would like know more details.

delays in library lock functions. We target user-level, in-

memory replicated key-value stores as the benefited applica-

tions. In building LIBROS, the largest challenge is in design-

ing prompt cancellation notification and highly precise delay

prediction. We show that while the overall “predict-then-

cancel-or-serve” framework provides uniformity, simplicity

and composability, every resource layer faces its own unique

challenges to achieve these two objectives as described in the

next three sections.

IV. ETOS

ETOS is a Linux extension with request cancellation and

prediction capabilities, focusing on CPU delays. Circumvent-

ing CPU contention by prediction and cancellation is an

interesting challenge—how can an application detect that it is

delayed in serving the arriving request while the application

itself needs the CPU? Fortunately, today’s latency-sensitive

services form a client-server communication where requests

pass through the OS (or some runtime), hence allowing ETOS

to carry the burden of prediction and cancellation. We detail

the challenges in implementing this feature in the TCP stack.

A. Cancellation Mechanism

There are two issues to tackle in cancelling requests: when

to promptly cancel requests within the TCP stack and how to

correctly remove requests from the TCP byte stream without

breaking TCP semantics.

PROMPT CANCELLATION: We found two choices: when

the packet arrives in the interrupt context (but before the TCP

protocol processes the packet) or in the TCP receiving/pro-

cessing context (which only happens when the destination

process gets a CPU). The former is ideal for prompt can-

cellation and notification but it is not safe to interfere with

the packet stream outside the regular TCP procedure (TCP

packet processing is important for checking corruption, out

of order delivery, and many other purposes). On the other

hand, the latter is safer but slower.

A more ideal scenario is to get both of the benefits—

process the packet during interrupt context such that can-

cellation can be done without any delay, which is the choice

we made. This did not just involve moving Linux tcp_recv()

function to the interrupt context, but we had to reroute the

stream from TCP “prequeue” to the main TCP receive queue.

One concern was that the interrupt context becomes more

heavyweight, however we did not see the implication in our

tests. Another fortunate news came nine months later when

Linux developers also removed TCP prequeueing, but for a

different reason; TCP prequeueing is optimized for “single

process with blocking read” design, which is no longer a

common style (polling-based calls are more frequent).

For cancellation notification, server-side ETOS sends back

ACK messages that contain the IDs of cancelled requests (in

general, request information is embedded in the TCP header

fields in both directions). For prompt delivery, we disable



TCP delayed acknowledgement for cancellation ACKs, or

otherwise they could be delayed by more than 40ms. Upon

seeing the notice, the client-side ETOS passes up the message

to the application via the notifyrecv() API.

CORRECT REQUEST REMOVAL: Cancelled requests should

be treated differently from dropped (missing) packets. The

former case implies that the packets have been received

successfully, but not yet delivered to the application. Thus,

cancelled requests should not alter the sequence numbers.

However at the same time, we need to give the illusion that

the cancelled requests have been read by the application such

that the packet read ordering is not broken (specifically, Linux

TCP’s copied_seq variable should be updated carefully). To

do this, we check the state of the application’s receiving

queue. If it is not empty, copied_seq should not be modified.

We increase copied_seq accordingly until all packets in the

receiving queue are read by the application.

B. CPU Delay Prediction

We now describe our prediction capability for measuring

CPU delay on every latency-sensitive request within the CFS

layer, Linux default and most complex scheduler. Unlike

other works that modify thread/core management [1–6], our

predictor does not modify CFS at all for adhering to the

“resource simplicity” principle (§II-B). Our predictor only

needs to change when CFS evolves, which rarely happens,

e.g. within the span of Linux v4.0 to v4.20 (3.5 years),

CFS only changes by 700 lines annually. For high precision,

the predictor must consider many types of process/thread

characteristics. Below, we describe our predictor from a naive

version to a complete one (the pseudo-code is in [58]).

LINEAR PREDICTION: In a naive scenario where all pro-

cess threads are CPU bound and long running on one CPU

core and exists in the same user and priority group, the

prediction can be based on a simple equation. For every

thread T in the waiting (ready) queue, the future time slice

when T will get the CPU is:

(
T.vruntime− U.vruntime

timeSlice
+ 1) ∗ timeSlice

where vruntime is the weighted time a thread has run on

the CPU [59, 60], timerSlice is 4ms, and U is the next

thread to be scheduled after T . Thus, to measure the CPU

delay of a request designated to a thread X , we find all the

threads supposed to be scheduled before X (the threads on

the left side of X’s position in CFS rbtree), then calculate

how much time each must wait, and finally sum them all.

HIERARCHICAL PREDICTION: CFS however implements a

hierarchy. When the scheduler picks a task to run next, it first

searches from the top-level scheduling “entities” and takes

the one with the lowest vruntime. If the chosen entity is not

a real thread but rather another high-level scheduling entity

(i.e. a nested hierarchy), the scheduler dives into it, searches

through its runqueue, and repeats the procedure again until

an actual thread is found. The chosen thread will be given a

time slice to run (4ms) before being preempted. After this, the

thread’s runtime statistics are updated and also propagated up

the hierarchy so that its new vruntime is properly reflected

to the vruntime of its parent entities.

The implication of this hierarchy is that linear prediction

no longer suffices. We must “simulate” what likely will

happen, but at the same time not tamper with the actual

accounting values. Thus, our predictor maintains a shadow

copy of the entire hierarchy. When a prediction is needed,

the shadow copy is first refreshed from the original values,

after which the delay prediction is run on the shadow copy.

PRECISE TIMESLICE ADJUSTMENT: CFS performs

scheduling on every timer interrupt or when a thread

relinquishes CPU (e.g. when calling a blocking operation).

Thus a thread does not necessarily run at a time slice

boundary. Upon a timer interrupt, if the last execution time

window of the currently running thread has not exceeded

its assigned slice, CFS will skip scheduling on the current

timer interrupt. Due to this imperfect time alignment, our

predictor is occasionally off by roughly 4ms. Theoretically,

if thread A starts at a timer interrupt t, then at the next

interrupt t+1 we would intuitively assume that A has run

for exactly 4ms. Upon further investigation, we found that

the accounted execution time is slightly shorter than 4ms

(e.g. 3.99ms). The reason is that the time taken for CFS to

find the next running thread (e.g. 0.01ms) is not accounted

into A’s execution time. This causes imprecision when a

thread’s assigned slice is exactly (or multiple of) a time slice

(4ms). With this observation, our predictor must slightly

underestimate vruntime (e.g. by 0.01ms).

DEPENDENT AND I/O-BOUND THREADS: So far we as-

sumed all threads are long running and independent, but

this assumption does not hold for all types of workload.

For example in the vips benchmark (an image processing

system [61]), the threads are dependent on each other via

synchronization primitives such as futex. For example, a

thread A occasionally wakes up another mostly-idle thread

B to execute some operation. Since B’s CPU consumption

is very small, it is favored by CFS to run next and B only

runs in a short burst and then sleeps again. Our prediction

is imprecise because of this nature of dependency and short

burst that does not consume a full time slice.

To incorporate this behavior, ETOS marks dependent

threads (via futex tracing) and estimates how long a depen-

dent thread must wait before being wakened up by another

thread. We record every dependent thread’s vruntime and idle

duration and use an exponential moving average to make the

estimation. Let zn denotes our estimation of a thread’s idle

duration at the nth time it is waiting and tn the real idle

duration, then by using an exponential moving average, our

estimation for the next (n+ 1)th wait time is:



zn+1 = α · tn + (1− α) · zn
Here α represents a decreasing weight, a constant smooth-

ing factor between 0 and 1; a higher α will value more recent

observations. We use 0.05 for α.

The same observation and technique can be made for I/O

bound threads that often run short CPU bursts and wait for

I/Os. However, note that when the application makes an I/O,

it is not blocked when the I/O is served by the buffer cache

or destined to a memory file system. Thus, we need to trace

the actual device I/O time for recording tn.

V. ETR (RUNTIME)

ETR (“R” stands for runtime) is a Java Virtual Machine

(JVM) extension with request cancellation and delay pre-

diction mechanisms pertaining to garbage collection (GC)

pauses where application threads must be paused. While the

literature in this area mostly focuses on manual GC tuning

or GC optimization [9–14], ETR’s follows the principle of

“let GC stop the world, but let it not stop the universe”

(e.g. in Taurus [12], a centralized manager that manages

GC contention in distributed machines by rotating their

GC periods). ETR however does not require a centralized

manager and runs on independent instances. ETR can work

with any stop-the-world GC algorithms because its main

functionality is cancelling paused requests such that the

higher-level distributed storage can continue retrying the

requests somewhere else (i.e. do not stop “the universe”).

Below we describe our solution to two main challenges:

how the runtime can send cancellation notification when all

application and many runtime threads are paused and how to

predict GC pause delays.

A. Cancellation Mechanism

For the cancellation mechanism, we tried several metrhods

from a naive to a more robust one. We tried modifying the

Java I/O library but found issues with Java safepoints and also

created a runtime-level thread similar to GC threads but found

issues with SIGSEV signals when we unpark them, which

all show the complexity of modifying a full-fledge JVM.

More details are in [58]. Finally and successfully, we create

a new runtime thread that does not have references to the

part of the address space being reshuffled (outside the Java

heap that contains application objects including URequest

and SocketImpl). Our thread must know the sender’s file

descriptor for sending cancellation notices, but because this

information resides in the Java heap (inside SocketImpl), we

modify the JVM to copy relevant information that ETR needs

and put them outside the Java heap.

B. GC Pause Prediction

JVM provides three GC algorithms, Parallel GC [62],

G1GC [63], and ZGC [64]. Regardless of the implementation

detail, we model GC execution time as a linear relationship

to the number of live objects in the object graphs. Others

have modeled GC in a linear way as well [65] but they model

when/how often GC will take place, while we model how long

every GC will pause. Because copying is the main bottleneck,

our linear model is:

Tgc =
Nliveobj × Tcopy

Ngcw

+ Tovh

Here, Tgc is the predicted delay, Nliveobj is the number

of live objects, Tcopy is the average copy time per object,

Ngcw is the number of GC workers, and Tovh is an additional

constant overhead. As ETR has visibility on Ngcw (a constant

configuration value) and Nliveobj (after the fast initial traver-

sal), we only need to profile the values of Tcopy and Tovh,

which are dependent on the memory speed and other environ-

mental factors. We tried several linear modeling algorithms

such as RANSAC and OLS and found that RANSAC leads

to the highest precision in our benchmarks. It successfully

models Tcopy, which depends on object sizes and memory

copy speed, and Tovh, which depends on some constant over-

head, e.g. finding live/dead objects in mostly-static GC roots

such as ClassLoader, System Dictionary, JNI handles and

Management Beans objects graphs that might fluctuate in the

beginning but will remain stable as the application runs for

some time.

ETR’s GC prediction is also not devoid of imprecision.

Luckily ETR does not have to consider a wide range of

application behaviors as ETOS does. ETR only needs to

predict GC delays within the target application (e.g. the

storage server), but not across different applications. In our

case, we found that the memory usage pattern of simple key-

value (de)allocations leads to a more predictable GC time

compared to the more complex behavior of memory-intensive

benchmarks.

VI. ETLIB

Finally, ETLIB advocates extending library functions that

manage resources, such as locks, to expose more information

that can help applications mitigate tail latency. In some

cases, designing better locking strategies helps [31, 66–68],

but for the simplicity argument (§III-B), ETLIB modifies

neither lock internals nor its usages. For Cassandra, we

apply this principle to the Java ReadWriteLock class used by

Cassandra foreground and background functions. We believe

that applying wrappers to other resource-managing library

functions can be done in a similar way.

DELAY PREDICTION: The lock function is blind of the

code that the lock protects, thus has no knowledge on how

long the lock is being held. A naive way is to look at the

call stack and take the average duration of the lock held

by every function. For example, if the lock is held by a

background operation, e.g. rebalanceRing or flushTable in

Cassandra, the average duration is usually much higher than

the lock time for foreground requests. Unfortunately call

stacks and function names do not relay enough information.



We found that the dominant factor of locking duration is

the number of for-loop iterations in the protected critical

sections; for example, rebalanceRing contains a triple-nested

loop iterating on N items that must be rebalanced.

Estimating this delay can be done within the library

function or in a wrapper. We chose the latter for simplicity, by

wrapping the ReadWriteLock functions. First, our application-

specific wrapper records which function is currently holding

the lock. With this information, we know the dominant

factor and the code complexity of the function holding

the lock, hence can estimate the delay more precisely by

tracking historical information and modeling and projecting

a simple average. For example, our wrapper can estimate that

rebalanceRing of 32 and 256 nodes take around 25 and 130

milliseconds on average, respectively.

CANCELLATION: With the delay estimation available, our

ReadWriteLock wrapper takes the deadline information from

URequest and if the remaining deadline cannot be met, we

return a delay “error.” Neither the ReadWriteLock nor our

wrapper needs to send the cancellation notice to the sender

because distributed storage is usually already equipped with

error propagation and retry mechanisms.

VII. IMPLEMENTATION

LIBROS is implemented in around 3550 LOC (ETOS in

2300 lines in Linux 4.10, ETR and ETLIB in 1000 and 250

lines in OpenJDK8, respectively). For the application, we

modify Cassandra v3.11.6 [69] and MongoDB v3.3.12 [70]

only in 120 and 50 LOC respectively, demonstrating the non-

intrusiveness of our approach. Due to space constraints, the

details can be found in [58].

VIII. EVALUATION

Our evaluation is primarily broken into two parts, perfor-

mance (§VIII-A) and precision (§VIII-B).

CLUSTER SETUP: We use Emulab d430 machine [71] that

has 16 cores (32 logical), 64 GB DRAM, and 1 Gbps net-

work. The retry overhead (machine-to-machine ping-pong) is

only 120µs. We deploy LIBROS on a small to large (20-node)

clusters, half used as client and half as server nodes.

APPLICATION BENCHMARKS: We mainly use Cassandra

and store the data in memory, replicated in 3 nodes. We

use a microbenchmark where every client node sends 10,000

requests per second and a macrobenchmark with various

load, noise, and read/write distributions. The experiments are

performed several times to ensure reproducibility.

CONTENTION (NOISE) BENCHMARKS: For CPU noises,

the Cassandra servers are colocated with CPU-intensive jobs.

We use 3 CPU benchmark suites, Minebench [72], PARSEC

[73] and SPLASH 2 [74], consisting of a total of 29 bench-

marks. For GC pauses, we periodically send a large batch of

non-critical requests to trigger GC within the experiment (e.g.

mimicking a large database update or scan that is not latency
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Fig. 3. Single- to multi-layer tails (§VIII-A1). The figures show CCDF
graphs of the client-perceived latency distribution with (a) CPU
noises, (b) GC pauses, (c) lock contention, and (d) all combined.
In each graph, we show the “Best” (no contention), LIBROS, and
“Raw” (no mitigation) lines.

sensitive, hence treated as regular, non-cancellable requests).

For measuring the precision of our GC prediction, we use 3

memory-intensive benchmarks, SPECjvm2008 [75], DaCapo

[76], and Renaissance [77]. For lock contention, we trigger

rebalanceRing, an operational protocol in Cassandra.

TECHNIQUES EVALUATED: We evaluate LIBROS against

popular practices such as Cassandra’s replica selection [78]

and speculative execution [79] with various timeout values.

For example, “95P speculative retry” is often suggested [56,

80] where a backup request is sent after the 95th-percentile

latency value (the timeout value) has elapsed.

A. Performance Evaluation

For performance evaluation, we gradually evaluate LIBROS

from a small to larger cluster setups and from LIBROS-vs-

“raw” evaluation to LIBROS vs. other approaches.

1) Single- to multi-resource contention

(3 nodes, synthetic benchmarks): We first repeat our motiva-

tional experiment (§II-A) and compare the “Raw” setup (no

tail mitigation) with ETOS, ETR, ETLIB, and all combined.

In this configuration, we use 1 client node and 2 server nodes

where one of them experiences contention, and the injected

contention is synthetic noises. For CPU noises, we insert

5 CPU-intensive threads per core; for GC pauses, we add a

non-critical batch of writes (70 MB/sec) that will trigger GC;

and for lock contention, we trigger a background operation

that competes on the same lock with the client requests. We

make the client choose the contended node first. The purpose

is to show a “best-case” scenario that LIBROS can obtain.

First, the “Best” line in Fig. 3 shows the latency CCDF

of the client requests when there is no contention in the

three resource layers. The line is vertically straight around

x=0.7ms, the best-case scenario we should target.

Second, the “Raw” lines (with noise) in Fig. 3a-c show

that the noises individually inflict long tail latencies to the

user requests between roughly 5 to 10% of the time compared

to the “Best” line. In Fig. 3d, all noises combined cause a

larger latency tail about 25% of the time.

Finally, the LIBROS lines show that each of our methods

can quickly react to the individual contention (Fig. 3a-c)
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as well as to the combined, multi-layer contention (3d).

LIBROS successfully eliminates the tail latencies caused by

the contentions (the large gap between the LIBROS and

“Raw” lines). Compared to the “Best” line, LIBROS is only

28% and 81% slower than the best case at 5% and 1% of

the time (y=5 and y=1), respectively.

We note that both in the “Best” and LIBROS lines, we

still observe a small <1% latency tail, caused by “unknown”

cases not covered by LIBROS (§III-B). For example, in the

Emulab testbed, we always observe 0.3–0.5% long latency

tail in a simple ping-pong workload, probably caused by

network contention. This small residual tail can be amended

by combining LIBROS with a small number of timeout-based

speculative retries, as we show later.

2) LIBROS vs. other techniques

(6 nodes, representative CPU benchmarks): We now thor-

oughly compare LIBROS with other popular practices. For

a clean observation, here we only add CPU noises. We

use three client nodes and three servers and every key-

value is replicated three times. All the server nodes are

shared between Cassandra and other CPU-intensive jobs.

Here we use real representative CPU noises—for every core,

we repeatedly run 2 threads of random CPU benchmarks

(from the 29 benchmarks) in short bursts and short pauses in

between every two runs.

Fig. 4 shows the same CCDF plot as in the prior figure,

but now we have a log2 y-axis and 9 lines representing the

best and raw scenarios, replica selection, and speculative retry

and LIBROS with 3 different deadline/timeout configurations

(85P, 90P and 95P values).

BEST AND RAW SCENARIOS: Let us quickly review the

best and raw scenarios (left-most vs. right-most lines). Here

we can see that the CPU noises introduce tail latencies

roughly 15% of the time (y=15 in Fig. 4).

REPLICA SELECTION (“REPS”): Cassandra employs

replica selection called “dynamic snitching” [78]. We find

this method performs poorly in our benchmarks, almost

TABLE II
Average latencies (§VIII-A2).

Average Slowdown vs.

Techniques Latency (ms) Best (in %)

Raw 2.17 234
SR-95 1.39 114
SR-90 1.05 62
SR-85 0.75 15
LIBROS-95 1.14 76
LIBROS-90 0.81 24
LIBROS-85 0.72 10
L85+SR98 0.67 near best → 3
Best 0.65 —

near the raw scenario (not shown to not overcrowd Fig. 4).

Because all the servers experience contention that (dis)appear

in short intervals, Cassandra’s snitch treats them as equally

fast (or slow) and is incapable of declaring which server is

contended in sub-second intervals.

TIMEOUT-BASED SPECULATIVE RETRY (“SR-85” TO

“SR-95”): To recap, timeout-based speculative retry implies

that if a request has not received a response after a certain

duration (the timeout value), this method will send a backup

request to another replica. In this technique, setting a proper

timeout value is difficult. Too short means too pessimistic

(leads to more inefficiency from sending too many backup

requests). Too long means too optimistic and it will reduce

application reactivity in retrying promptly. For fairness, we

tried three timeout values, 1.5ms at 85P, 3ms at 90P, and

8ms at 95P (based on the percentile values in the Raw

distribution).

Fig. 4 shows that speculation is effective in cutting tail

latencies, but not as reactive as LIBROS, mainly because

speculation does not know what is currently happening in

the servers. For example, in the “SR-90” case, the speculation

only sends backup requests after waiting for 3 ms (the 90P

Raw value). On the other hand, LIBROS will quickly send a

cancellation notice when it knows the request deadline cannot

be met. Hence, our LIBROS-supported application does not

have to wait for any timeout; cancellation notices were sent

promptly and the application reacts much faster.

LIBROS: We can see that overall LIBROS is more effi-

cient. Just like timeout-based retry, LIBROS depends on the

application to provide the deadline value for the requests.

Thus, we have three LIBROS lines in the figure with 85P,

90P and 95P deadline values for “apple-to-apple” comparison

to speculative retries. LIBROS-85 and LIBROS-90 exhibit

shorter tail latencies while LIBROS-95 does not trigger many

retries (due to the relaxed 8ms deadline).

LIBROS WITH 98P (2%) SPECULATION: LIBROS only

covers contention in the resource layers that participate in

providing cancellation and prediction capabilities. It does

not eliminate all sources of tails. As mentioned before, even

the best-case lines always show almost 1% of tail latencies

(due to network contention or other unknown factors). For
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this reason, it is wise to combine LIBROS with speculative

retry but with an optimistic timeout. For example, in the

“S85+SR98” line, the application sets an 85P deadline value

for LIBROS and still sends backup requests when a 98P-value

timeout has elapsed, sending only 2% backup requests.

OVERALL RESULTS: In addition to CCDF graphs, Table II

shows the average latencies. As shown, cutting long latency

tail by implication reduces the average latency. LIBROS with

85P deadline and with 98P speculative retry (“L85+SR98”)

is the most optimum because in the original distribution

without tail mitigation (the Raw line in Fig. 4), the latency

tail starts appearing around 85P, and in the LIBROS-85 line

the residual latency tail is roughly 2%.

Overall, compared to speculative retries with the same P

values, LIBROS reduces the completion time of user requests

by 31-66% at 90P and 35-70% at 95P (see Fig. 4), and 5-

23% on average (derived from Table II). Compared to the

best-case scenario, our most optimum setup, “S85+SR98”,

is only 3% slower on average (see Table II) and 13% and

22% slower at 90P and 95P, respectively (see Fig. 4).

3) LIBROS vs. speculative retry (20 nodes): We now

repeat a similar experiment but scale it up to 20 nodes (10

clients and 10 servers).

For Fig. 5a, we insert uniformly across all the servers 60%

latency-sensitive get and 40% non-critical put operations

(to trigger Java GC) as well as CPU noises similar to the

previous section. The bar graph shows again that LIBROS

combined with a relaxed speculation (the “L+SR” bars) is

the most effective (lower latencies across the 80P to 99P

values). At x=95P, speculative retry is slightly better than

LIBROS (by itself) because LIBROS’s predition is slightly

imprecise (which we dissect in the next section). At x=99P,

LIBROS latency is also high because, as mentioned before,

we need speculative retry to mitigate the unknown noises

(hence, ”L+SR” is more effective).

For Fig. 5b, across the servers, we now spread the get

operations with a Pareto α=0.1 distribution and the CPU

noises with an Exponential λ=0.5 distribution; every server

TABLE III
Benchmark mixes (§VIII-B1). BENCHMARK MIXES FOR

MEASURING ETOS’ PREDICTION ACCURACY.

Mix Description

A User 1: blackscholes, swaptions, fluidanimate
+ User 2: faceSim, freqMine, raytrace

B barnes, fft, fmm, lu-cb, ocean-cp, radiosity, vips
C radix, raytrace, volrend, water-nsquare, barnes, fft, dedup
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Fig. 6. ETOS precision (§VIII-B1). The figures show CDFs (0.0 to
1.0 in y-axis) of CPU delay prediction errors (Derr in ms in x-axis)
across CPU benchmark mixes.

now observes a different request load and CPU noise dis-

tribution compared to its peers. The figure shows the same

conclusion that while LIBROS outperforms speculative retry

below 99P, the combined approach (“L+SR”) always leads

to the most superior performance.

B. Precision

The job of every predictor is to estimate how long an

arriving request must wait in the corresponding layer. We

now measure the precision of our three predictors.

1) CPU delay prediction (in ETOS): To measure ETOS’

prediction precision, we use applications from the 3 CPU

benchmark suites mentioned earlier. We start with a 1-core

evaluation where we run a mix of 3 to 7 applications, as

listed in Table III. We performed many mixes and repeated

several times, but for space, we only present three mixes of

benchmarks with unique results that show the importance of

ETOS prediction features.

We measure ETOS imprecision by instrumenting Linux

and adding information about when threads are running and

preempted. In every 100 ms, we pick a random thread T in

the wait queue and let ETOS predicts how long T has to wait

before obtaining a CPU, i.e. the estimated delay (Dest). At

the same time, our instrumentation also monitors the actual

delay (Dreal). We measure the error (Derr=Dest−Dreal)

and collect 1000 data points for every mix.

Fig. 6a-c show the CDF of the Derr data points in the

three mixes. In every figure, we show the naive feature to the

most complete feature (§IV-B): linear prediction (LIN), plus

hierarchical prediction (+HIER), plus timeslice adjustment

(+ADJ), and plus dependent thread awareness (+DEP).

In Mix-A (Fig. 6a) with CPU-bound benchmarks, our hier-

archical feature (+HIER) is better than the linear prediction

(LIN), but not too precise, until the timeslice adjustment is
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added (+ADJ). In Mix-B (6b), with the presence of vips, an

image processing system with dependent threads, the first

three features are not enough, but with dependent thread

awareness (+DEP), the predictor becomes more precise.

Mix-C is a different mix but with dedup which also contains

dependent threads, hence +DEP shows more precision. Over-

all, Fig. 6a-c show that ETOS is highly precise; the +DEP

lines hover around x=0 (i.e. 0ms errors) and are only off by

mostly +/−8ms in 5% of the time.

Finally, we show an experiment on 32 cores (Fig. 6d)

where we ran 2-3 random benchmarks per core with a mix of

70% real CPU and 30% synthetic benchmarks (the memory

space is not enough to run all real CPU benchmarks). The

solid line in Fig. 6d shows that ETOS exhibits a 92%

precision. The dashed “worst-cpu” line represents the CPU

core where ETOS predicts accurately only 74% of the time.

However, on the “best-cpu” core, ETOS is precise up to 98%.

While being not fully precise, ETOS only mispredicts by 1-2

timeslices (+/− 4-8ms across the x-axis).

2) GC pause prediction (in ETR): To evaluate ETR’s

precision, we chose 3 widely used Java benchmark suites,

SPECjvm2008, DaCapo, and Renaissance. To measure im-

precision, similar as above, ETR predicts how long every

GC activity will run (Derr) and we also instrument the

JVM to measure the actual GC duration (Dreal). For every

benchmark, we run the experiments until it captures 1000

Derr data points.

Fig. 7 shows the distribution of the Derr values. Every

figure shows the two modeling algorithms we used (§V-B),

RANSAC and OLS. In Fig. 7a-c, ETR is not precise in

predicting GC pauses in benchmarks with complex memory

usage, due to the reasons described before (§V-B). For-

tunately, as we target storage systems, we notice that its

memory usage pattern is not too complex (i.e. simple key-

value (de)allocation). For now, it is sufficient for ETR to

estimate under this simple pattern. Fig. 7d shows that with

1 MB of key-value (de)allocation per second with random

sizes from 0.1 to 1 KB, ETR is only imprecise by +/−4ms

in about 8% of the time with RANSAC.

3) Lock wait prediction (in ETLIB): For ETLIB evaluation,

we use Cassandra’s rebalance-ring background operation

(“calculatePendingRanges”) that can hold a ReadWriteLock

that is also needed by foreground requests. In pure, masterless

P2P system such as Cassandra, rebalancing is not a single

iteration; since every node keeps sending the new view of

the ring on every gossip, all the nodes will perform many

iterations of rebalanceRing that can consume 35 to 150 ms

depending on how many items to rebalance in the function’s

triple-nested loop. Thus, when a server node is locked in this

function, user requests should be retried to other replicas.

Our Cassandra-specific lock wrap-
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per (§VI) knows when the lock is

held by rebalanceRing and also the

variables that the loops are iterat-

ing on. With this, we can profile

and keep a projection of lock wait

time based on average values. For

example, Fig. 8 shows a whisker plot

where the x-axis is the number of nodes to rebalance and the

y-axis how long the lock is being held. Every whisker bar

represents five values: the 1st percentile (1P), first quartile,

median, third quartile and the 99th percentile (99P). Lock

unavailability depends on the number of nodes to rebalance,

but for each node count, the average is a reasonable repre-

sentative value to use for prediction.

Overhead and Additional Evaluations: We also have inte-

grated LIBROS with MongoDB (see [58]). • LIBROS CPU

overhead is under 1%, most of them come from ETOS

because ETR and ETLIB do not need to run on every

request. • Our performance evaluation shows that there is

no performance instability due to cancellation. In essence,

the number of requests retried with LIBROS is similar to that

of timeout-based speculative retry.

IX. CONCLUSION

We have demonstrated how an ecosystem of layered

tail mitigation supports from library, runtime and operating

system layers can “cut the tail together,” resulting in a

more effective outcome. LIBROS integration with three major

layers are a proof of concept how “request” can flow in

an end-to-end manner and becomes a first-class concern and

how request cancellation and delay prediction capabilities can

be built in uniform and stackable manners. In our extended

report [58], we extend further discussions including possible

extensions to other resource layers, other notable contentions,

and rooms for optimization.
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