
CNT: Semi-Automatic Translation from CWL to Nextflow for

Genomic Workflows

Martin L. Putra∗, In Kee Kim†, Haryadi S. Gunawi∗, and Robert L. Grossman∗
∗Department of Computer Science, University of Chicago, {martinluttap, haryadi, rgrossman1}@uchicago.edu

†School of Computing, University of Georgia, inkee.kim@uga.edu

Abstract—With the rise of advanced workflow languages for
scientific computations, Nextflow has gained increased atten-
tion from the bioinformatics community. Nextflow offers native
support for advanced parallelism, which can greatly enhance
resource utilization and throughput. Still, a significant portion of
bioinformatics workflows are developed with the Common Work-
flow Language (CWL). Transitioning from CWL to Nextflow
poses a significant challenge due to the differences in pro-
gramming models, scripting language compatibilities, and the
prerequisite for in-depth knowledge in both languages.

To address this challenge, we present CNT, a novel, semi-
automated translator converting CWL workflows into Nextflow
ones. At its core, CNT uses an automated translation mechanism
that converts the CommandLineTool, the most basic unit of
CWL, into Nextflow’s Process class. This component integrates
tool-level conversion, graph dependency analysis, and correct-
ness checks to provide highly automated translation coverage,
significantly reducing the development time while satisfying
language-specific requirements like building a proper dataflow
model when creating workflows. Furthermore, CNT incorporates a
module for aiding manual translation. Specifically, it can identify
three common JavaScript patterns in CWL workflows, offering
further guidance for developers during the translation phase. We
evaluated CNT with production-grade workflows and found that
it can cover up to 81% of the original workflows, substantially
reducing development time. Additionally, transitioning from a
cwltool-based system to Nextflow with CNT can result in a 72%
speedup and 85% increased CPU utilization.

Index Terms—Genomic Workflows; CWL; Nextflow, Workflow
Translation; Bioinformatics;

I. INTRODUCTION

Workflow languages are widely used when production sys-

tems analyze biomedical data since they provide consistent

processing of batches of data, reproducible processing of a

particular dataset, restart and reentry, data provenance, and

other desirable properties, such as the ability to easily share

bioinformatics pipelines with others. The popularity of par-

ticular workflow languages and workflow managers varies by

subfield, data type, computing environment, and over time.

For this reason, a wide variety of workflow languages and

workflow managers are used in bioinformatics. For example,

the survey [1] mentions over 150 workflow managers in use

or in production.

Given the variety of workflow languages, it is desirable to

have reliable tools that translate a workflow from one workflow

language to another. For example, the Genomic Data Com-

mons (GDC) [2] has developed 11 production CWL workflows

[3] that are used for processing all the data submitted to the

DNA-Seq RNA-Seq
Speedup over cwltool [5] 21-39% 33-72%
CPU Utilization Increase 18-33% 45-85%

Translation Coverage 73% 81%

TABLE I. Summary of evaluation results (§I).

GDC. Given the popularity of the GDC and the amount of data

it processes, others are interested in using the same workflows

so that the data may be processed uniformly [3]. On the other

hand, different groups may want to use different workflow

managers.

With the growing popularity of Nextflow [4], there is signif-

icant interest within the bioinformatics and cancer genomics

community in having a tool that translates CWL into Nextflow,

as they have developed numerous CWL pipelines. While

converting a CWL workflow to Nextflow manually is possible,

this approach is exhaustively time-consuming and demands

in-depth domain-specific expertise. For example, based on

our experience, translating a production-grade pipeline, such

as the GDC DNA-Seq workflow from CWL to Nextflow,

takes approximately 160 person-hours. This estimate does not

include testing and integration time.

Translating a CWL workflow into Nextflow presents several

significant challenges. First, Nextflow follows a dataflow pro-

gramming model, whereas CWL is declarative. This requires

translation efforts to ensure the correctness of the dataflow

model in Nextflow using various Nextflow operators. In con-

trast, CWL often relies on the workflow engine to support

dataflow correctness, resulting in the explicit dataflow being

commonly overlooked in workflow descriptions. Second, exist-

ing CWL workflows heavily utilize JavaScript, which must be

translated into Nextflow’s scripting counterpart (e.g., Groovy).

This implies that the workflow translation involves not only

moving from CWL to Nextflow but also transitioning from

JavaScript to another language. Finally, to achieve the desired

performance, developers must be familiar with advanced task

parallelism supported in Nextflow and apply the appropriate

Nextflow operators.

To address these challenges and maximize the benefits

of adopting Nextflow, we developed CNT, which is, to the

best of our knowledge, the first translator semi-automatically

converting CWL workflows into Nextflow. CNT operates in

three stages: a tool-level translation, graph dependency analy-

sis, and a correctness check. In each stage, we tackle spe-

cific challenges. The tool-level translation converts CWL’s

22

2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE)

2471-7819/23/$31.00 ©2023 IEEE
DOI 10.1109/BIBE60311.2023.00012

smallest workflow components, CommandLineTool files, into

Nextflow’s Processes through a five-step approach based on

essential CommandLineTools fields. Subsequently, the graph

dependency analysis organizes these components into a com-

plete workflow, addressing critical ordering challenges related

to input/output variables in a Process, the sequence of Pro-

cesses in a subworkflow, and the arrangement of subworkflows

in the final workflow. Finally, CNT ensures correctness by

performing typecasting that verifies the use of appropriate data

types for Nextflow processes and operators. Moreover, while

CNT can automatically translate a significant portion (e.g., 73%

– 81%) of CWL code to Nextflow, certain code segments

may require manual intervention, such as developer-written

JavaScript codes. To enhance the translation process, CNT
identifies three JavaScript code patterns that guide developers

during the translation.

To evaluate CNT’s performance, we used CNT to translate

the GDC DNA-Seq and RNA-Seq pipelines into Nextflow.

Our evaluation first focuses on measuring translation coverage

and correctness. The results show that CNT can automati-

cally translate up to 81% of CWL code to Nextflow with

a correctness rate of up to 71%. Subsequently, we evaluate

the performance improvements achieved by using Nextflow

workflows translated by CNT vs. running CWL on cwltool

[5], the reference implementation of CWL. The results reveal

significant speedups, with execution time reductions of 72%

in RNA-Seq and 39% in DNA-Seq, along with an average

increase in CPU utilization by 65% and 25.5%, respectively.

II. BACKGROUND

This section provides background information on the devel-

opment of a workflow translator from CWL to Nextflow.

Workflow Languages. Protocols for analyzing bioinformat-

ics data are often represented as computational workflows.

Many workflow languages have been developed to represent

such workflows. These languages are designed to achieve

different goals, such as portability and reproducibility (e.g.,
CWL [6]), human-readability/writability (e.g., WDL [7]), up

to fine-grained control of dataflow (e.g.. Nextflow [8]).

Common Workflow Language (CWL). CWL uses two

core classes of files to represent workflows: CommandLine-
Tool and Workflow. The ‘CommandLineTool’ is the smallest

building block of a workflow, describing at least a specific

command-line application, its parameters, input data require-

ments, and the output it produces (the full list of supported

information can be found in [9]). The ‘Workflow’ class takes

a CommandLineTool file as a single computational step and

composes it into a whole computational workflow. Workflows

can be nested, allowing a single step within a Workflow to

be another Workflow file up to arbitrary depths. Furthermore,

CWL allows the use of JavaScript code to manipulate output

files, such as changing names and constructing/deconstructing

more complex data structures.

Nextflow. Analogous to CWL, Nextflow also has two

classes which represent the smallest workflow building block

and a whole computational workflow: Process and Workflow.

CommandLineTool Field Template Placeholder
ID [E] Process Name
Requirements [E] Container
Inputs [C] Input, Optional Variable
Outputs [C] Output
baseCommand [C] Script
Arguments [C] Script

TABLE II. Summary of value substitution (§III-A). E: ele-
mentary item that does not require processing, C: a collection
that requires one before substitution.

However, unlike CWL, Nextflow employs Groovy as its script-

ing language. It also introduces many dataflow operators [8]

which need to be used appropriately to leverage parallelism

during workflow execution.

III. DESIGN OF CNT
We present CNT, a system designed for semi-automatic

translation of CWL workflows into Nextflow workflows. CNT
consists of three stages:

• Tool-level translation (§III-A). This stage constructs the

smallest workflow building block by translating a CWL’s

CommandLineTool into Nextflow’s Process, specifically

by capturing and translating essential fields defined in

CWL and then arranging these building blocks into a

subworkflow in the next stage.

• Graph-dependency analysis (§III-B). Following that,

CNT addresses three important ordering challenges: the

order of input/output variables in a Nextflow process, the

order of processes in a subworkflow, and the order of

subworkflows in the final translated workflow. CNT solves

these challenges simultaneously by doing a recursive ex-

ploration technique that captures data lineage information

and then builds a directed acyclic graph (DAG), which

describes the type signature and order of invocations for

both processes and subworkflows.

• Correctness check (§III-C). The last stage ensures

accurate workflow translation by conducting a correct-

ness check for both tool-level translation and graph-

dependency analysis. CNT utilizes typecasting, a method

to confirm the use of proper data types for Nextflow

processes and operators.

CNT performs all these stages using only a JSON represen-

tation of the original CWL files. The following subsections

explain the above three stages in detail.

A. Tool-Level Translation

This stage consists of 5 steps: template construction, field

extraction, value substitution, optional variable construction,

and entrypoint management. Fig. 1 illustrates the steps in-

volved in tool-level translation, each of which is denoted by

a number from 1 – 5 .

Template generation. We observed that Nextflow process

structure can accommodate most information from CWL’s

CommandLineTool. Moreover, each piece of information (e.g.,
one input variable) can be separated by a new line – a

property that we will exploit in later steps. These features

23

Process $name {
 $container
 input:
 $input
 output:
 $output
 script:
 $opt_var_declaration
 $script
}

ID:
 Requirement:
 Inputs:
 Outputs:
 baseCommand:
 Arguments:

CWL CommandLineTool

Nextflow Process

Field
Extractor

JSON

Value
Substitutor

Nextflow Process
Process $name {
 $container
 input:
 $input
 output:
 $output
 script:
 $opt_var_declaration
 $script
}

Value
Constructor
(Opt. Value
Declaration)

Template
Generator

Patterns

Nextflow Process
Process $name {
 $container
 input:
 $input
 output:
 $output
 script:
 $opt_var_declaration
 $script
}

Endpoint
Manager

Container
Config

Nextflow Process
Process $name {
 $container
 input:
 $input
 output:
 $output
 script:
 $opt_var_declaration
 $script
}

1

2

3 4 5

Fig. 1: Five steps of tool-level translation (§III-A).

facilitate the generation of a Nextflow Process template (Step

1). The template provides a placeholder for process name,

container information, input/output variables, shell commands,

and optional variable declarations. Throughout subsequent

steps, the template will be filled with corresponding informa-

tion from CommandLineTool fields, one line for each piece of

information.

Fields extraction. This step extracts the information needed

to fill the placeholders in the template. We identified 6

CommandLineTool fields that are essential for creating a fully

functional Nextflow Process: ID, requirements, inputs, outputs,

baseCommand, and arguments (Step 2). Information extrac-

tion is done by transforming the CommandLineTool source

file into a JSON representation, followed by accessing the

relevant key-values. CNT uses cwl-utils [10] to transform CWL

source files into JSON. Following that, it stores all extracted

information in-memory to be processed before writing them

to the template placeholders.

Value substitution. Table II summarizes the Command-

LineTool fields used for filling each template placeholder

along with its type. The value of each field can be in the form

of elementary items (e.g., string or integer) or collections (e.g.,
list or dictionary). For elementary item, CNT directly inserts the

value to its respective placeholder (Step 3). For a collection,

CNT first flattens any nested items. It then performs additional

extractions and constructs a string using the elements from the

collection.

Optional variable declaration. This step is to support

the dataflow model in Nextflow, wherein a Nextflow Process

requires explicit configurations of input and can only execute

once all its inputs are ready. In contrast, CWL provides for

optional inputs, simplifying the writing and execution of work-

flows (e.g., allowing workflows to run without specifying every

input). There was an effort from the Nextflow community

to develop a pattern for addressing CWL’s optional inputs

[11]. CNT integrates this pattern to ensure that optional input

channels always contain an item, whether or not they are

supplied (Step 4).

Container entrypoint management. Containerized deploy-

ments for scientific workflows have been widely adopted in

recent years [12], where each step can be encapsulated within

a container (e.g., Docker). This approach requires managing

containers’ entry points in order to determine which binary is

executed and its corresponding path upon initialization. CNT
addresses this issue by examining the configuration file (e.g.,
Dockerfile) for each container involved in the workflow (Step

5), thus ensuring the appropriate binary path is used.

B. Graph-Dependency Analysis
The next step in CNT involves composing Nextflow Pro-

cesses, which were created during tool-level translation, into

subworkflows, and combining these subworkflows into a final

workflow while addressing ordering challenges. The ordering

challenges stem from the difference in how CWL and Nextflow

perform invocations: named vs. positional arguments. These

challenges can arise in both the Nextflow Process and the

subworkflow layer. In the Process layer, the challenge is to

manage the order of input/output variables. In the subworkflow

layer, the challenge is to manage the order of invocations.
However, to address these challenges, CNT requires infor-

mation that is scattered across all CWL files, and collecting

all the information is not trivial. For example, CNT first

needs to collect the path of all related files. Subsequently,

it has to extract all necessary information from each file.

CNT attempts this through a two-steps approach: recursive

exploration for file path collection and DAG construction for

the target workflow.
Recursive exploration file path collection. CNT first col-

lects the paths of all CWL files used in the workflow. In

CWL, a file with class Workflow can include other CWL

files as steps, while a file with CommandLineTool can not.

The challenge is twofold: 1) CWL allows to use relative path

when including another file as a step, and 2) an included file

may, in turn, include other files, up to arbitrary depth. To

address these challenges, CNT performs a DFS-like recursive

exploration technique with the following logic. Each file is

considered as the root of a tree with unknown depth. Other files

included as steps are the root’s children. CNT then examines the

JSON representation of each child one by one. If the file is a

CommandLineTool, CNT extracts its path and then backtracks

to its previous operations. However, if the file is a Workflow,

CNT treats that file as another root and performs the exact

same search. This procedure is recursively executed until CNT
traverses the whole tree.

DAG construction for target workflow. With the collected

file paths, CNT extracts all the required information from each

file and constructs a DAG for the target workflow. During DAG

24

construction, CNT solves the ordering challenges by ensuring

correct order of: 1) I/O variables, and 2) invocations.

1) Order of I/O variables. When translating a language that

uses named arguments (e.g., CWL) to one that uses posi-

tional arguments (e.g., Nextflow), reconstructing type signature

requires information from two layers: the callee layer and

the caller layer. This is because, with named-arguments, the

input/output variables from one layer might appear in different

order and aliases in another layer. A translation system can

choose either order, but it must ensure consistency across both

layers. CNT achieves this by maintaing a DAG data structure.

For each callee, CNT creates a vertex that contains a map

as attribute. The map describes the alias of each of callee’s

variable as viewed by its caller.

2) Order of invocations. After creating vertices, CNT ana-

lyzes the relationship between them. A directed edge from a

vertex to another is created if an output from the former is used

as input by the latter. This completes the DAG construction.

Order of invocations is equivalent to topological order of the

DAG’s vertices.

C. Correctness Check

We observed that when performing translations, CNT needs

to take into account Nextflow’s runtime behavior related to the

types of input and output variables, which affects Nextflow’s

runtime file staging. However, ensuring correct type translation

is challenging based on our experience, as there are multiple

points in a workflow where a variable may be transformed

from a file to another type.

We categorize these possible locations into two layers:

Nextflow’s Process layer and workflow layer, each with its own

characteristics. In Process layer, undesirable transformations

can occur when a variable is passed as either input or output.

In the workflow layer, these transformations can take place

wherever a Nextflow operator handles the variables.

Typecasting. We developed a method called typecasting

that ensures correct type translation across both layers.

At the Nextflow Process layer, CNT examines the type

declared for each variable within input and output block.

It ensures variables intended to represent file objects are

correctly declared by inspecting the attributes of DAG vertices

associated with the Nextflow Process (§III-B). Each Nextflow

Process can be associated with at least two vertices: one

representing a workflow which invokes it, and the other

representing a Nextflow Process itself. As each vertex holds

aliases for its respective input and output variables, CNT can

determine whether a Process input was originally passed as

a file object by examining these aliases. This information is

used for declaring variable types.

At the workflow layer, CNT ensures the correct use of

Nextflow operators to avoid undesired translations. We also

ensure that a variable originating from a file is processed

with Nextflow operators that preserve its type, such as using

Channel.path() instead of Channel.of(). To achieve this, CNT
considers data lineage by utilizing the DAG constructed in

§III-B. The origin of a variable can be traced by identifying

the edge representing the variable and then traversing back

through nodes and directed edges in the DAG.

IV. MANUAL TRANSLATION

While CNT automatically translates a significant portion of

CWL codes (detailed in §V), some code segments of CWL

workflows require manual translation. Manual translation has

two main objectives: 1) ensuring syntax conformance and 2)

achieving the expected performance. Syntax conformance aims

to reduce errors when converting JavaScript in CWL to Groovy

in Nextflow. Achieving the expected performance ensures that

the translated workflows deliver the desired performance with

proper dataflow and task parallelism.

A. Ensuring Syntax Conformance

Formal methods [13] for translating JavaScript code into

Groovy require constructing a grammar for each language.

Since CWL’s adaptation of JavaScript uses a slightly altered

grammar (e.g., enclosing inline expressions with ‘$()’ or

prefixing with ‘|’), for this work we translated JavaScript into

Groovy based on a code-level analysis of our CWL workflows.

We found that JavaScript expressions within these workflows

can be categorized into three common patterns: 1) object

attribute access, used to extract values from collection inputs,

2) object method calls, handling simple modifications on literal

values, such as string pre/suffix changes and upper/lower

case transformations, and 3) ‘actual’ code block, containing

tasks ranging from constructing collections and sorting to

calculating and managing workflow executions.

Based on these findings, we further enhanced CNT with a

three-step approach to assist developers in semi-automatically

addressing each pattern. This approach utilizes our carefully

designed regex rules to accurately identify each pattern. Sub-

sequently, CNT performs the following three steps.

Handling object attribute access. This pattern typically

appears as two or three JavaScript tokens separated by dots.

As Groovy’s way of accessing object attributes is identical

to that of JavaScript’s, CNT can directly apply this expression

in the translation. A challenge for CNT, however, is addressing

the many strings appearing before, between, or after successive

patterns. Our regex rules effectively tackle this issue.

Replacing object method call. The challenge in this step

arises from the similarity of this pattern to the previous one.

The key difference is that the last token in this pattern repre-

sents a method call. To differentiate attributes from method

call tokens, we identified frequently used method names,

treating them as ‘flags’ for this pattern. For example, in our

target workflows, we identified four common method calls:

nameroot, tostring, basename, and dirname. CNT then maps

each method call to its corresponding Groovy equivalent.

Isolating ‘actual’ code block. We recognize that the

methods applied to the previous patterns are not sufficient for

addressing ‘actual’ code blocks due to the extensive variability

in JavaScript codes. However, CNT can correctly detect and

isolate these code blocks. In its current version, CNT replaces

them with a placeholder designed to trigger a syntax error.

25

Files MD5 Simil. O OV S
RNA 31 71% 0% 22% 100%
DNA 46 63% 55% 22% 44%

TABLE III. Translation MD5 similarity for automated-
translation of CNT (§V-A). Column names ”O”, ”OV”, and
”S” are shortnames for template placeholders described in
§III-A. O: Output, OV: Optional Variable, S: Script.

This placeholder is based on the principle that a clear failure

is often better than introducing transient errors. Furthermore,

this placeholder acts as a signal for developers, indicating the

need for manual translation of the code block into Groovy.

Although resolving this challenge still requires manual

intervention by developers, our experience indicates that CNT
can significantly reduce the development time by roughly 75%.

V. EVALUATION

We built CNT in Python, leveraging the cwl-utils [10] that

facilitates parsing CWL into a JSON representation. We eval-

uated CNT’s performance across two dimensions: translation

MD5 similarity and coverage by employing two widely-used

genomic workflows, namely RNA-Seq and DNA-Seq. We then

measured the performance gain of adopting CNT by comparing

the execution speedup and CPU utilization increase against a

popular CWL execution engine.

A. Translation MD5 Similarity

CNT successfully performs tool-level translation using the

‘MD5 similarity’ metric, where the upper bound for perfect
similarity is 74% for RNA-Seq (because JavaScript code with

an unhandled pattern will cause an execution error). CNT is
able to achieve 71% similarity for RNA-Seq.

We define ‘MD5 Similarity’ as having an identical MD5

value between the outputs of CWL and its Nextflow transla-

tion. We focused on evaluating the correctness of workflow

steps translated by the tool-level translation (§III-A), because

workflow-level translation often involves manual intervention

which leads to different MD5 values. Furthermore, some

outputs may contain execution timestamps, resulting in a

unique MD5 value for each execution. To address this, we

removed the timestamp from these outputs before calculating

their MD5 value, or exclude them if removal is not possible

(e.g., binary output format).

For any translation errors, we categorize the cause into three

groups based on the template placeholder that causes it: output

(O), optional variable (OV), and script (S). A single translation

mistake can involve multiple placeholders, in which case we

increment counts for each affected placeholder. We omitted

input and container placeholders from the results since they

did not exhibit any translation errors.

Table III reports the translation MD5 similarity for two

workflows. The ‘# Files’ column represents the number of

CommandLineTools files invoked during execution, while the

‘MD5 Simil.’ column indicates the percentage of files pro-

ducing correct outputs. Template placeholder columns (e.g.,
O, OV, S) show the percentage of translation errors attributed

 0

 20

 40

 60

 80

 100

RNA DNA

C
o

ve
ra

g
e

 (
%

)

Manual
Automated

(a) Trans. Coverage

 0

 1000

 2000

 3000

 4000

RNA DNA

3035
3686

1591
1968

#
 L

O
C

CWL Nextflow

(b) Total LOC

Fig. 2: Coverage and LOC evaluation results. (§V-B) (a):
x-axis: workflow types, y-axis: the percentage of coverage. (b):
x-axis: workflow types, y-axis: the total LOC in thousands.

to each placeholder. For example, for DNA-Seq workflows,

O=55% means 55% of incorrect translations have mistakes in

the output placeholder.

The results have several interesting findings. We discuss

only one due to the page limit. We observed that no incorrect
translations in RNA-Seq workflow occurred on the output (O)
placeholder, while the value was around half for DNA-Seq.

This indicates DNA-Seq’s way of declaring output is generally

more challenging to handle by CNT compared to RNA-Seq.

Our in-depth manual inspection revealed that while RNA-Seq’s

output declaration heavily utilized JavaScript, the majority

aligned with our generalized JavaScript patterns (§IV-A). On

the other hand, the JavaScript patterns in DNA-Seq are more

complex, such as “nameroot.split(‘ ’).slice(0,4).join(‘ ’)”.

B. Translation Coverage and Total Lines of Code (LOC)

Fig. 2a shows the translation coverage of CNT for both

RNA-Seq and DNA-Seq workflows, achieving 73% and
81% coverage, respectively. In this figure, the lower por-

tion represents the fraction of automated code translation,

while the upper portion denotes manually written code. The

automatically translated part aggregates code from tool-level

translation, graph dependencies, typecasting, and partially-

handled JavaScript. The manual part includes all fixes and

fine-tuning needed to ensure syntax conformance and achieve

the expected performance.

The results indicate that CNT had about 8% lower coverage

for RNA-Seq than for DNA-Seq, leading to a larger portion

of code being manually translated despite RNA-Seq’s more

accurate translation correctness. Our further analysis revealed

that RNA-Seq has substantial volume of code from Com-

mandLineTool files which requires manual replacements with

Nextflow’s operators.

Fig. 2b compares the total lines of code (LOC) of CWL

workflows with their corresponding Nextflow translations,

including both automated and manually translated code. We

define the total LOC as the cumulative LOC across all files

in a workflow. To calculate the LOC of a single file, we first

took the total line count and deducted lines comprised solely

of comments and whitespaces. Although our approach might

count multiple complex JavaScript or Groovy statements on a

single line (e.g., separated by ‘;’) as a single LOC, we found

that such occurrences are exceptionally rare in practice.

26

C. Performance Gain by Adopting CNT
Our evaluation primarily focused on two key metrics:

speedup (execution time reduction) and CPU utilization im-

provement when processing the same workflow using cwltool

[5] and Nextflow. Cwltool, the open-source official reference

for CWL, was chosen because of its wide adoption in the

community. Our evaluation shows an average speedup of
52.5% for RNA-Seq and 30% for DNA-Seq when migrating

from a cwltool-based system to a Nextflow-based system.

Additionally, the Nextflow-based system showed an average
increased CPU utilization of 65% for RNA-Seq and 25.5%
for DNA-Seq, in comparison to a cwltool-based system.

Detailed range of speedup and utilization increase can be

found in Table I.

VI. RELATED WORK

Several works employed learning techniques to achieve

automatic translation between general-purpose programming

and scripting languages. NGST2 [14] developed a neural archi-

tecture capable of translating sections of imperative general-

purpose languages into their functional language counterparts,

supporting convenient parallelization. DuoGlot [13] addresses

the challenge of maintaining readable automatic translations,

even when the source code has different coding styles, by

incorporating user feedback. In contrast to these works, CNT
does not rely on learning techniques, avoiding the need for

extensive datasets which are rare yet necessary to train models

effectively.

As efficiency and safety are both crucial for systems-level

applications, there are several attempts to translate legacy code

to memory-safe Rust. Emre et al. developed techniques to

automatically generate safe Rust code from unsafe segments

of C code [15]. Lunnikivi et al. semi-automatically translated

Python code into low-level code for efficiency using Rust as

intermediate representation [16]. These projects have a simi-

larity to CNT as they perform automated translation followed

by a manual refinement. However, CNT’s primary focus lies

in targeting domain-specific languages, rather than the broader

general-purpose languages such as C and Python.

With the increasing use of accelerator hardware, various

research domains, including bioinformatics, have increasingly

adopted GPUs to handle their ever-expanding workloads [17].

To facilitate GPU support, there are attempts to translate

legacy code into CUDA. GPSME [18] offers semi-automatic

source-to-source translation of SME applications originally

written in C and C++ to CUDA. Conversely, MocCUDA [19]

automatically translates CUDA code into OpenMP to take

advantage of CPU-only supercomputers.

VII. CONCLUSION

This paper presents CNT. To the best of our knowledge,

CNT is the first semi-automatic translator that converts CWL

workflows into Nextflow workflows. The core of CNT is an au-

tomatic translation module that performs tool-level translation,

graph dependency analysis, and correctness checks to provide

highly automated translation coverage, significantly reducing

the development time. Additionally, CNT has a module to aid

manual translation. In particular, CNT can accurately identify

three common JavaScript patterns in CWL workflows that can

further guide developers during translation. Our evaluation

of CNT centered on its translation accuracy, coverage, and

the performance enhancements achieved by using CNT to

transition from cwltool to Nextflow. Our findings highlight that

CNT not only ensures precise and extensive translations but also

significantly boosts workflow execution speeds and utilization,

leading to significant improvement in bioinformatics job pro-

cessing throughput. In summary, our evaluation demonstrates

the value of CNT when transitioning from CWL to Nextflow.

REFERENCES

[1] L. Wratten, A. Wilm, and J. ke. Reproducible, scalable, and shareable
analysis pipelines with bioinformatics workflow managers. Nature
Methods, 2021.

[2] Allison P Heath, Vincent Ferretti, Stuti Agrawal, Maksim An, James C
Angelakos, Renuka Arya, Rosita Bajari, Bilal Baqar, Justin HB
Barnowski, Jeffrey Burt, and et al. The NCI Genomic Data Commons.
Nature Genetics, 2021.

[3] Z. Zhang, K. Hernandez, J. Savage, S. Li, D. Miller, S. Agrawal,
F. Ortuno, L. M. Staudt, A. Heath, and R. L. Grossman. Uniform
genomic data analysis in the NCI Genomic Data Commons. Nature
Communications, 2021.

[4] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame. Nextflow Enables Reproducible Computational
Workflows. Nature Biotechnology, 2017.

[5] cwltool: The reference implementation of the common workflow
language standards. https://github.com/common-workflow-language/
cwltool.

[6] Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John
Chilton, Nebojš a Tijanić, Hervé Ménager, Stian Soiland-Reyes, Bogdan
Gavrilović, Carole Goble, and The CWL Community. Methods included.
Communications of the ACM, 2022.

[7] OpenWDL - Community driven open-development workflow language.
https://openwdl.org.

[8] Nextflow. https://www.nextflow.io/docs/latest/.
[9] Common Workflow Language Standards, v1.2. https:

//www.commonwl.org/v1.2/.
[10] cwl-utils. https://github.com/common-workflow-language/cwl-utils.
[11] Nextflow Patterns. https://nextflow-io.github.io/patterns/optional-input/.
[12] Laura Wratten, Andreas Wilm, and Jonathan Goke. Reproducible, Scal-

able, and Shareable Analysis Pipelines with Bioinformatics Workflow
Managers. Nature Method, 2021.

[13] Bo Wang, Aashish Kolluri, Ivica Nikolić, Teodora Baluta, and Prateek
Saxena. User-Customizable Transpilation of Scripting Languages. Pro-
ceedings of ACM Programming Language, 2023.

[14] Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Isil Dillig.
Automated transpilation of imperative to functional code using neural-
guided program synthesis. Proceedings of the ACM on Programming
Languages, 2022.

[15] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf.
Translating C to Safer Rust. Proceedings of ACM Programming
Language, 2021.

[16] Henri Lunnikivi, Kai Jylkkä, and Timo Hämäläinen. Transpiling Python
to Rust for Optimized Performance. In International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), 2020.

[17] A. Taylor-Weiner, F. Aguet, N. J. Haradhvala, S. Gosai, S. Anand,
J. Kim, K. Ardlie, E. M. Van Allen, and G. Getz. Scaling computational
genomics to millions of individuals with GPUs. Genome Biology, 2019.

[18] Po Yang and et al. Improving Utility of GPU in Accelerating Industrial
Applications With User-Centered Automatic Code Translation. IEEE
Transactions on Industrial Informatics, 2018.

[19] William S. Moses, Ivan R. Ivanov, Jens Domke, Toshio Endo, Johannes
Doerfert, and Oleksandr Zinenko. High-Performance GPU-to-CPU Tran-
spilation and Optimization via High-Level Parallel Constructs. In ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPoPP), 2023.

27

