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Abstract

We share our technical experiences in improving the perfor-

mance of long-running jobs on the Genomic Data Commons

(GDC), a large-scale cancer genomics cloud platform. We

show how common bioinformatics workloads can cause VMs

to age after several days, causing a large number of Ex-

tended Page Table (EPT) violations that significantly impact

performance. We present host- and VM-level EPT monitor-

ing and evaluate several possible mitigation scenarios. We

highlight the long investigative process required for this re-

search, with experiments requiring many days to complete.

1 Introduction
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Figure 1: Sequencing cost.

DNA sequencing in 1977,
tremendous volumes of
genomic sequencing data
have been produced, and
the number of biologi-
cal databases has been
doubling about every 15
months [1]. A driving
force behind this is the
exponential drop in the
cost for sequencing a human genome, which is shown by the
solid purple line in Figure 1 [2]. As can be seen from Fig-
ure 1, the cost of sequencing a genome has been decreasing
faster than Moore’s Law (shown by the dashed green line).

With this tremendous growth in biological data, it has be-
come more challenging to manage and analyze the data. As
a result, in the recent years, a wide range of bioinformatics
methods, techniques, algorithms and tools have been devel-
oped to analyze the experimental data and understand the
underlying biological mechanisms and their significance [3].

Genomic sequencing data is particularly important in can-
cer, since cancer is in large part driven by genomic muta-
tions. The GDC was launched in 2016 with the goal of pro-
viding a repository for cancer genomics data and for har-
monizing data that is submitted to it with a common set
of bioinformatics pipelines. The GDC is large-scale cloud
based system that stores, analyzes, and shares genomic, clin-
ical and imaging data from patients with cancer. The GDC
is a hybrid cloud system and uses both a private on-premise
cloud and the public AWS cloud. The GDC is one of the

largest bioinformatics platforms that support the cancer re-
search community (see Section 2 for more details).

An important backbone of the GDC is GPAS, the GDC
Pipeline Automation System that is used for processing data
submitted to the GDC and running a wide range of bioin-
formatics pipelines over the data. It is important to note that
at the scale the GPAS operates, using public compute and
storage clouds would be 1.5x or more expensive than using
private on-premise clouds. On the other hand, using pub-
lic clouds is important for GPAS for burst computing, for
making use of a wider variety of machine configurations, for
running portions of larger, more complex pipelines, and for
flexibility in general.

On the compute side, GPAS runs a large on-premise
VM cloud powered by OpenStack/KVM, and the on-premise
GPAS clusters uses a combination of Ceph and Cleversafe
for storage. While there are many interesting experiences
to share, this paper focuses on technical matters that might
benefit the systems community. In particular, we present our
experiences in managing the bioinformatics pipelines and
KVM performance in GPAS.

KVM performance (EPT violations under extreme
memory fragmentation). We reveal a significant VM per-
formance problem that surfaced in GPAS. We noticed that a
significant number of jobs in GPAS exhibited much slower
performance compared to other similar jobs, with a degrada-

tion of up to 10×.

GPAS workloads are I/O intensive, require large mem-
ory instances, and, most importantly, are long running. For
example, many jobs take weeks to complete. These charac-
teristics made the problem difficult to troubleshoot. Online
monitoring tools that we typically use only report high-level
aggregate metrics and did not pinpoint the root cause. Try-
ing to replicate the problem in an “offline” setting also did
not reveal the root cause because of the different environ-
ments (fresh vs. aged VMs). Recording more online metrics
did not give us quick outcomes because the problem did not
appear in the early days of the jobs.

Because of all of these observations, we speculated that
the problem could be related to memory fragmentation of ag-
ing VMs where many sequential guest pages are not mapped
sequentially on the physical pages, causing extreme trans-
lation lookaside buffer (TLB) misses. More specifically,
this brought us to the root cause, the overhead of hardware-

USENIX Association 2021 USENIX Annual Technical Conference    459



User interface
Web apps, command line ...

Pipeline execution engine

Pipeline language
CWL, WDL, NextFlow ...

Execution model
Embarrassingly parallel, 

MapReduce, Spark ...

Data Storage
Local, Ceph, S3 ...

Execution environment
Bare Metal, VM (OpenStack, Xen ...)
Cluster Manager( HPC, SLURM, AWS ...)

Figure 2: Full stack bioinformatics pipeline platform.

assisted Intel Extended Page Table (EPT) [4] technology
used by the virtual machine memory management in the VM
hypervisor [5]. Interestingly, we confirmed that the prob-
lem only surfaces in the OpenStack/KVM stack. We were
not able to reproduce the problem in cloud VMs used by
Amazon Web Services (AWS) and Google Cloud Platform
(GCP). We speculate that public clouds might use their own
proprietary virtualization technology (that is not available to
us to analyze).

Besides presenting our findings, this paper also shows
challenges in monitoring EPT performance issues. We also
present several mitigation scenarios that we tried out, such
as rebooting the VMs, defragmenting the memory, running
on bare metal, and using public clouds, along with their ad-
vantages and disadvantages.

2 Background and Motivation

Figure 2 illustrates the full stack of layers of a typical bioin-
formatics cloud platform from the user/administrative inter-
face to the execution platform. In order to improve portabil-
ity and replicability, bioinformatics pipelines are often writ-
ten in a workflow language [6], such as the Common Work-
flow Language (CWL) [7] or the Workflow Description Lan-
guage (WDL) [8]. Bioinformatics pipelines are also typi-
cally containerized. There are several systems available for
executing workflows expressed in workflow languages, in-
cluding CWLtool [9] for CWL and Cromwell for WDL [8].
As this paper discusses the core systems aspect of GPAS,
we have put additional information about the pipelines in
the supplemental material [10]. To improve isolation to sup-
port security requirements, GPAS runs each containerized
pipeline in a virtual machine. GPAS manages virtual ma-
chines using OpenStack/KVM. GPAS currently uses CWL-
tool. CWLtool does not support parallelizing tasks of a
pipeline across different machines, however tasks can run in
parallel across cores of a machine. Currently, GPAS uses a
policy of allocating one VM per physical node, since many
GDC pipelines benefit from this allocation. GPAS uses
SLURM as the cluster manager for the VM pool and sched-
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Figure 3: Accumulated input consumption and output
production over the months, §2.

Clouds Approx. Hourly Approx. Annual

On premise $0.31 $691,000
AWS (Spot) $0.75 $1,693,000
AWS (3-yr Reserved) $1.06 $2,386,000
AWS (On-Demand) $2.50 $5,645,000

Table 1: The approximate costs of on-premise vs. public
cloud, §2. For AWS, we assume that EC2 i3.8xlarge instances

are used, which are roughly similar to the on-premise instances.

ules jobs to run on SLURM. In bioinformatics, the terms
“pipeline” and “workflow” are often used interchangeably.

On average, over 3,000 researchers use GDC every day,
with over 100,000 unique researchers using the GDC each
year. Over 1 PB of data is accessed or downloaded from the
GDC in a typical month. GDC currently manages over 15
PB of data across almost 100 storage servers, including the
released data, the data being processed for release, temporary
files, and backup copies. There are over 200 compute nodes
containing 7500 cores, 50 TB of RAM, and 900 TB of local
disk/SSD storage. Figures 3a and 3b show the accumulated
amount of data that GPAS has processed and produced by
month for a two year period. Interested readers can refer to
the GDC Documentation [11] for more details.

The GPAS on-premise cloud annually processes about
322,000 workflows requiring 35 million core hours. At this
scale, the costs using a public cloud would be significantly
higher, as shown in Table 1. For this comparison, on-premise
costs assume a 4-year amortization of equipment costs and a
15-year amortization of data center costs. The comparison
assumes that on-premise nodes are used at 100% utilization.

3 Workloads in GPAS

3.1 The bioinformatics pipelines and tools

GPAS uses a wide range of pipelines that include various
bioinformatics analytical tools and serve different analysis
purposes. At this time, there are 10 open-sourced pipelines
in the GDC GitHub repository [12].

Table 2 lists the open-source pipelines and the main tools
used in these pipeline. GPAS uses a large variety of tools that
include in-house software or scripts, such as HTSeq Tool and
GDC VEP Tool, and widely used third-party bioinformatics
tools, such as BWA and GATK. In addition to those listed in
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Pipeline Main tools used

DNA-Seq Alignment BWA [13], Biobambam2 [14],
Picard Tools [15], GATK [16]

RNA-Seq Alignment STAR [17]

miRNA Alignment and Profil-
ing

BWA [13]

RNA-Seq HTSeq Quantifica-
tion

HTSeq Tool [18]

WXS Variant Calling MuSE [19], SomaticSniper
[20], VarScan2 [21], MuTect2
[22]

WXS Variant Filtering Picard Tools [15]

WGS Variant Calling CGP WGS [23]

VEP Variant Annotaton GDC VEP Tool [24]

Mutation Annotation File
(MAF) Generation

MAF Tools [25]

SNP6 Segmentation snp6cbs [26]

Table 2: Open-source GDC Pipelines and the main tools
used in the pipelines.

Tool Language I/O Intensity Computing

Intensity

samtools C High Low
BWA C High High
FastQC Java Medium Low
MuSE C++ Low High
MuTect2 Java Low High
SomaticSniper C High High
VarScan2 Java High High

Table 3: Characteristics of the tools used in GPAS. The

observations are based on the way we used the tools in GPAS, the

results may differ if they are used in different ways

the table, FastQC [27] and samtools [28] are also commonly
used across all the GDC pipelines.

Due to the large number of tools that exist in bioinfor-
matics, it is difficult to characterize the computing resource
demand and performance of each tool before putting them
into use. We list the the characteristics of some tools in Ta-
ble 3 that are used in the DNA-Seq alignment and whole
exome sequencing (WXS) variant calling workflows, two of
the longer running workflows in GPAS. Note that the way
GPAS uses the tools in Table 3 is that, for samtools, FastQC,
MuSE, MuTect2, SomaticSniper, VarScan2, GPAS spawns
multiple processes each of which runs the same tool on sep-
arate input files, even though the tool may support multi-
threading by itself [10]; for BWA, GPAS uses BWA’s own
multi-threading functionality.

Table 3 shows that even though MuSE, MuTect2, Somat-
icSniper and VarScan2 are all somatic variant calling tools,
due to different algorithms and program designs, they expose
different patterns in I/O intensity. The GPAS pipelines are
quite varied, and some GPAS pipelines, such as the MAF
generation pipeline, require significantly less time to com-
plete.

3.2 Pipeline Job Performance

For simplicity of discussion, we mainly measure job-level
performance. A pipeline job is an execution of the pipeline
that handles a specific set of input data. Readers who are in-
terested in knowing the logical abstraction and composition
of the pipeline can read our extended report [10].

The majority of the jobs in GPAS process a large amount
of input data and take a long time to complete. Thus, a sim-
ple metric for understanding job performance and its degra-
dation is the processing rate:

processing rate =
job execution time

input data size
(1)

The unit of processing rate is seconds/GB or hours/GB,
thus a larger processing rate value means means the perfor-
mance is worse (as more time is needed for processing one
GB of input data).

Due to the complexity of bioinformatics pipelines in
GPAS, the job performance shows quite interesting patterns.
The job performance shown in this section are collected from
jobs that ran on bare metal nodes, so that we avoid the inter-
ference from VMs (which will be discussed later).

Through linear regression and significance-test analysis, it
is found that, among all the parameters known at the time a
job starts (such as number of input files, number of CPUs
allocated, etc.), input data size exhibits the strongest correla-
tion with processing rate.

To better illustrate the correlation between input size and
processing rate, jobs are sorted by their processing rate, and
divided into 20 buckets according to the percentile of pro-

cessing rate. Average input size of each bucket is shown in
Figure 4 and 5. There can be either positive or negative cor-
relation between input size and processing rate, depending

upon the specific pipeline. There are three relationships that
emerge from this analysis:

Larger input size means slower/larger processing
rate (positive correlation): As shown in Figure 4, process-

ing rate is positively correlated with input size for some
pipelines. This is the case for sequence alignment pipelines.
Note that, as can be seen in the graph to the right, pro-

cessing rate of this pipeline is generally very large, more
than 1500 seconds/GB. Sequence alignment involves multi-
ple string searches and exhibits positive correlation between
input data size and processing rate.

Larger input size means faster/smaller processing
rate (negative correlation): Contrary to the previous result,
Figures 5 shows that processing rate is negatively correlated
with input size for some pipelines. For example, this is the
case for some utility pipelines that involve accessing and ex-
tracting files from cloud buckets for processing. Note that
processing rate in this pipeline is much faster than for the
jobs in the previous one. With a high-bandwidth network
and I/O, processing rate is higher. However, since the exe-
cution time for such pipeline jobs is short, the overhead of
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Figure 4: A DNA-Seq alignment pipeline shows larger
input size has slower/larger processing rate. Each per-

formance bucket contains 5% jobs, and buckets that have larger

number demonstrate worse performance, §3.2
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Figure 5: An internal light-weighted pipeline shows
larger input size has faster/smaller processing rate. Each

performance bucket contains 5% jobs, and buckets that have larger

number demonstrate worse performance, §3.2

spawning containers and other components is significant in
comparison. As a result, smaller input size leads to worse
processing rate.

External factors interference: In addition, there are
some cases that may not comply with the previous behav-
iors. Figure 6 shows a distribution with two peaks for the
job processing rate of a pipeline. By inspecting job logs, it
is found that jobs at the right peak (slower jobs) spent sig-
nificantly longer times downloading data. That suggests that
there might have been network congestion in the cluster dur-
ing that time. Hence, in some cases, we need to take the ex-
ternal environment into account to understand the processing

rate of jobs.

To conclude, through statistical analysis of the jobs, al-
though there are some degrees of variation, we find that pro-

cessing rate for pipelines is highly correlated with a job’s
input size. The exact correlation depends on the workloads
associated with the pipeline. Sometimes, the processing rate

might also be subject to external factors during some parts in
the job. It is important to understand the nature of the job so
that good interpretation can be formed.

In the next section, we will discuss performance issues
that arise and create long tail distributions when jobs are ex-
ecuted on VMs.
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Figure 6: Abnormal Processing rate Distribution. Each

performance bucket contains 5% jobs, and buckets that have larger

number demonstrate worse performance, §3.2

4 Performance Issues:

Aging VMs and EPT Violations

The GDC uses over 20 complex pipelines for processing
data. Some of the pipeline components are I/O bound and
some are memory bound. Complicating matters, some of
the pipelines are long-running and can take several weeks
to complete. After several months, it became apparent that
some of the pipelines failed to complete, especially the
longer running ones, which required retrying the pipelines,
and which decreased the overall throughput of the system.
After some experimentation, it appeared that long running
pipelines performed better on bare metal nodes versus using
virtual machines, and some of the nodes running virtual ma-
chines were replaced with bare metal nodes for this reason.

Figure 7a shows the success rate for jobs in each month.
GPAS serves more than 20,000 jobs per month and has
achieved over 90% monthly success rate for the jobs. The
figure shows the success rate of jobs running on VMs (red)
and bare metal (green). As noted, for long running jobs
(those that require weeks), performance, as measured by GB
processed per hour, tends to decline, and failures tend to be-
come more common. Some jobs have to be stopped in the
middle due to their very poor performance.

Starting in June 2019, GPAS began to run some jobs
on bare metal nodes, while continuing to run most jobs
on virtual machines. Although using bare metal nodes im-
proves job completion rates, it significantly complicates the
management of GPAS, since the GDC in general is de-
signed around the setup, management, and monitoring of
virtual nodes. For this reason, identifying the root cause of
the higher failure rate for long-running jobs and mitigation
strategies for improving the completion rate was important.

4.1 Job Performance Variance

Our next step was to quantify the slowdown. Originally,
the GPAS compute pool used only VMs managed by Open-
Stack.

We divide pipeline jobs into comparable groups [10], and
Figure 7b shows the cumulative distribution function (CDF)
of processing rate of jobs on VMs and bare metal nodes that
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Figure 7: Performance of jobs running on VMs and bare
metal nodes, §4. a) shows the success rate over the months for

jobs running on VMs and bare metal nodes (which were added to

the computing pool at a later time); b) shows processing rate CDF

comparison between VMs and bare metal nodes.

we profiled in our deployment for one of the groups. For this
figure, there are 796 and 247 jobs on VMs and bare metal,
respectively, and all the jobs run the same type of pipeline
(called “variant-filtration.pindel”), hence all the jobs should
observe similar performance. In Figure 7a, the nearly verti-
cal solid line represents stable processing rate of jobs on bare
metal nodes. However, the dashed line of Figure 7b shows
that processing rate on VMs is generally worse than process-

ing rate on bare metal nodes. While this is expected, the is-
sue lies in the tail performance especially at high percentiles.
According to the zoomed graph in Figure 7b, starting from
the 80th percentile, processing rate on VMs is 3 times worse
than bare metal nodes, and in higher percentiles, the perfor-
mance gets worse by a even larger magnitude.

We also would like to note again that the jobs in Fig-
ure 7b are jobs that come from one type of job pipeline
(“variant-filtration.pindel”) that generally only spends not
more than 40 seconds/GB. However, there are other more
CPU/memory-intensive pipelines that spend 1000 – 3000
seconds for each GB. The problem raised in this paper be-
comes worse for these even more intensive pipelines.

Besides, the performance variation is a wide-spread issue
across all of the pipelines mentioned in Section 3. And in
fact, we divided all the pipeline jobs (around 200K) into 474
comparable groups at the time of writing this paper. Among
the largest 20 groups (constituting 36.5% of all the jobs),
all of them exhibit a long tail in performance, and 95th per-
centile performance is larger than 1000 seconds/GB for 12
groups.

To show that the behavior in Figure 7b is not because of
degraded machines or hardware, we take six VMs that run
on six different machines and show the statistics of the job
performance on these VMs in Figure 8 in a boxplot. In ev-
ery VM (e.g., VM1 on machine1), users can run the same
job pipeline repeatedly. Maximum and minimum processing

rate are represented by the top and bottom bars, and 75th

and 25th percentiles are represented by the top and bottom
edges of the rectangle box, and median value is represented
by the line inside the rectangle box. As shown in the fig-
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Figure 8: Performance variance across VMs, §4.1.

ure, the processing rate in a single VM varies (even though
the same pipeline) and the performance across the VMs also
varies (even though the VMs have the same configuration).

4.2 Application-Level Measurement

We manually noticed that jobs started running slower on
VMs that have been running for several days. Thus, in or-
der to understand the root cause to the issue, we conducted a
set of experiments that included micro-benchmarks and real
workloads. All experiments were conducted on a pair of
VMs with the same virtual hardware setup and the same soft-
ware setup, except that one of the VMs was cold-restarted
before the experiment. We refer this cold-restarted VM as a
Fresh VM. The other VMs (Aged VM) had been running for
a few days and were selected for close monitoring after slow
jobs were observed. Each VM was the only tenant on its host
and configured to have 40 vCPUs, 226GB RAM and 2.5 TB
storage. The hosts were equipped with two 2.20GHz 12-core
24-thread Intel Processors Xeon E5-2650 v4, 504GB RAM
and 7.3 TB SSD RAID-5 storage. Linux-4.4 kernel, libvirt
1.3.1 and OpenStack Nova 13.1.4 were installed for virtual
machine support.

First, we ran a simple application to reproduce our obser-
vation about a Fresh VM vs an Aged VM. To simplify the
experiment, we broke down a widely used pipeline in GPAS
(Somatic Variant Calling) and only selected one of the tools,
VarScan2 [21]. Job pipelines in GPAS are spawned as multi-
ple processes, hence VarScan2 can run as multiple processes.
The details and the reason for parallelism is explained in
[10].

Since the input data for all the tests in this experiment are
the same, here we do not use processing rate, but instead ex-

ecution time as the performance metric. A higher execution
time implies worse performance (the same as in processing

rate).
We define an “n-process VarScan2 task” as a task that uses

n VarScan2 processes to process the input data. We define a
“test” as an experiment that concurrently runs 5 tasks of the
8-process VarScan2 on a single VM. The input data is repli-
cated 5 times and each task performs the same computation
on the same content but distinct replicas of the data. After a
test completes, we measure and record the average execution
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Figure 9: VarScan2 experiment, §4.2. Each point in the

figure represents a test of five 8-process VarScan2 tasks.

time of the 5 tasks in the test and then repeat the test until 5
days have elapsed.

Figure 9 shows the average execution time of the tasks
across several days. Every y point represents a test; the y
value of a point shows the average execution time of the 5
concurrent tasks in the test. We can observe that between
day 0 and 1.6 (marked by line B), the execution time of the
test is relatively fast with low variance. However, after ap-
proximately 1.6 days, the performance starts to degrade. We
observe that VarScan2 tasks perform normally on a Fresh

VM, but perform much worse on an Aged VM.

4.3 Kernel-Level Measurement

To understand the slow performance in an Aged VM, we con-
ducted further experiments including micro-benchmarks and
in-kernel measurements in the Aged VM.

We use sysbench [29], a configurable multi-threaded
benchmark tool that provides a variety of tests for bench-
marking CPUs, multi threading, memory operation, and file
I/O performance. We performed many varieties of experi-
ments (not shown here for space) and found that most bench-
marking results do not reveal much difference between an
Aged VM and a Fresh VM (not shown), except for file I/O
performance. Not only does the I/O throughput show differ-
ent results; but, more interestingly, the monitored CPU uti-
lization on Aged VM and Fresh VM are quite different when
compared to that of the host OS.

A common way to monitor CPU utilization is calculat-
ing the difference of accumulated values in the pseudo file
system (/proc/stat). Simply speaking, the values represent
how many time slices have been used for each type (user,
system, etc) and for each CPU. There are many tools that
profile CPU utilization including top and scollector. We
use the latter as it collects and saves raw data, and we can
use other tools to calculate and visualize it in desired ways.

Figure 10 shows the comparison of CPU utilization col-
lected from the host OS versus inside an Aged VM. In the
VM, we ran a sysbench file I/O test (on an SSD). It is worth
noting that there are two lines in the figure (UtilRaw and
UtilDrv) representing two ways we calculate CPU utiliza-
tion. UtilRaw is the raw CPU utilization number (in %)
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Figure 10: CPU utilization of sysbench, §4.3. CPU utiliza-

tion during sysbench file I/O test is presented in this figure. The

graph to the left shows CPU utilization collected from the host OS,

while the one to the right is collected from an Aged VM. The VM is

the only tenant on its host.

that scollector outputs in every second. In addition to
the raw CPU utilization, scollector also outputs more de-
tailed information, including cpuUserSlices, cpuSysSlices,
and cpuIdleSlices. We define UtilDrv (for derived) by
summing the user and system time slices and dividing
by all slices ((cpuUserSlices+cpuSysSlices)/allSlices).
Again the difference is that UtilDrv simply sums the
cpuUserSlices and cpuSysSlices without considering the
idleSlices. The figure also shows another line sys, which
represents cpuSysSlices divided by all the slices (in %).

We make the following important observations: (a) Sys-
tem (sys) CPU utilization is high on the host and equal to
the overall CPU utilization. A similar observation can be
found in the Aged VM. We consider this abnormal because
the workload is I/O bound. (b) At the peak utilization, the
CPU utilization observed on the host is 82%, while it is only
27% on the Aged VM. Note again that there is only one VM
on the host and no other heavy workloads running on the
host. This implies that the hypervisor works intensively, a

hidden CPU overhead. (c) On the VM, there is a gap be-
tween the two ways we measure CPU utilization (the gap
between UtilDrv and UtilRaw). Normally, these two lines
should overlap as in the host-level measurement (left graph).
What happens here is that scollector assumes the VM al-
ways gets all the CPU slices from the host OS. However,
with our method, UtilDrv, it shows there is a “loss of time”
due to the hidden overhead in the hypervisor. CPU time that
is supposed to be used for tasks in the VM was used for other
system tasks in the host. (d) On a separate measurement on
a Fresh VM (not shown for space), we found no such high
system CPU usage nor a gap between the two lines.

4.4 Memory Fragmentation

A major problem of aging resources is fragmentation. We
started suspecting there was a memory fragmentation prob-
lem where sequential guest pages were not mapped sequen-
tially on the physical pages. To get more evidence, we ran
concurrent processes and analyzed read operations. Roughly
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Tasks 1 × 1 1 × 8 4 × 8 5 × 8

Steps #1-4 < 1 < 2 < 12 < 20
Step #5 5 92 290 512

Total 6 94 306 552

Table 4: Read latency break-down, §4.4. Average total

time (in seconds) that each process spends in the five steps during

read operations are listed in the table. x× n at the top row means

a test with x number of n-process VarScan2 tasks.
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Figure 11: Correlations between EPT violations and job
execution time, §4.5. Each bar represents the statistics for

jobs when the VM is 0, 3, 6, and 10 days old. EPT violations are

recorded by enabling tracing on the physical host.

speaking, a file read operation goes through five steps: 1)
check the page cache to see whether the data is already in
memory; 2) conduct a synchronized read request at the file
system level; 3) send out an asynchronized read request at
the block level; 4) wait for completion; and, 5) copy the data
from the kernel to the user space. Step (5) represents the
most memory-intensive step among all the steps.

We conducted an experiment that records the time spent
in each of the steps. We set up four tests. The first test runs a
single 1-process VarScan2 task, and the other four tests run
1, 4, and 5 (concurrent) 8-process tasks, respectively.

Table 4 shows the average time every process spends on
each I/O step. Note that most of the time is spent in Step
#5 (memory copying). With just 1 process (1x1), a process
only takes 5 seconds in total for memory copying. With 40
processes (5x8), every process now takes 512 seconds in step
#5, which is roughly a 100x slowdown. We note that there
is other contention in the SSD (as can be seen in steps #1-
4); but, even with 40 processes, the I/O waiting time is not
as severe as the slowdown from memory-copying. We also
note that we have a 48-core machine, hence CPU contention
should be almost negligible with 40 processes.

4.5 The Root Cause: EPT Violation

In this section, we quantify the root cause. After consider-
able investigation, we found that the root cause resides in the
extended page table (EPT), which is a technology invented
to increase virtual memory performance for VMs. The use of
EPT by the hypervisor is designed to be transparent to VM
users. To our knowledge, EPT is used by only certain hyper-
visor implementations, such as Linux KVM. In a nutshell,
EPT serves as a page table that stores the mapping between

the VM memory address and the host physical memory ad-
dress. Modern CPUs use the translation look-aside buffer
(TLB) to store a small subset of the EPT entries. Whenever
there is a TLB miss, an EPT violation occurs, which causes
the hypervisor to interrupt the VM to handle the violation.

Figure 11 shows an experiment with 5 jobs using 30 cores
running repeatedly on a fresh state VM for ten days. Figure
11a shows the average number of EPT violations (in mil-
lions) observed in every 5 minutes. The figure clearly shows
that the longer the VM has been running, the higher the num-
ber of EPT violations. Figure 11b confirms the correlation
between the number of EPT violations and job execution
time.

In conclusion, VM aging leads to more frequent EPT vio-

lations causing the hypervisor to interrupt the VM more fre-

quently. In the next two sections, we describe how we moni-
tor and mitigate the problem.

5 Performance Management

To manage this performance problem, we discuss the two
parts of our solution: monitoring and mitigation.

5.1 Monitoring

We suggest two methods to detect VM aging: monitoring
EPT violation (in the host) or CPU utilization gap (in the
VM), along with with the challenges.

Host-Level EPT Violation Monitoring One direct way
to measure the problem is to count the number of EPT vi-
olations observed in the hypervisor, however the result is
relative—how do we know whether the number represents
a higher than normal number of EPT violations. We found
another more concrete metric to measure this problem: ad-

dress distance of subsequent EPT violations (which basically
attempts to measure the level of memory fragmentation). For
example, if two subsequent violations at time T and T+t
are about translation misses of guest pages #100 and #2000,
respectively, then the distance recorded is 1900×4KB. Es-
sentially, we argue that when the addresses of subsequent
EPT violations are farther apart, the memory tends to be
more fragmented and more EPT violations will occur, caus-
ing more time to be spent managing EPT violations.

We return to the experiment in Section 4.5 and this time
plot the distribution of address distances of subsequent EPT
violations. Figure 12 shows different distributions catego-
rized based on the age of the VM age. Notice that older
VMs have distinctly larger address distances. For example,
in a 10-day old VM, we can see a distance of at least 50GB
in roughly 40% of the time (x=50GB, y=0.6).

This method requires access to the host. It can provide
performance alerts in advance. For example, the distance
distribution in a 3-day old VM can be clearly distinguished
from a fresh VM. Here, the resulting job execution time has
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vCPU Efficiency Execution
Application / VM (%) Time

Heavy / Fresh VM 99 16.0 hrs
Heavy / Aged VM 83 39.0 hrs
Light / Fresh VM 99 5.4 hrs
Light / Aged VM 99 5.6 hrs

Table 5: vCPU Efficiency, §5.1. vCPU Efficiency and execu-

tion time for applications on the Fresh VM and Aged VM are listed

in the table. There only shows a difference in vCPU Efficiency for

the “heavy” application.

been increased by 27% (which was hard to observed in the
middle of the job). Thus, this kind of monitoring allows us
to predict job performance degradation even before the job
ends. In terms of performance overhead, sampling violations
in an online manner may bring an impact to system perfor-
mance. However, our experiment where the trace is enabled
for five minutes every ten minutes does not show a negative
impact on performance.
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Figure 12: EPT violation dis-
tance CDF, §5.1.

Monitoring While the
above method requires
host-level access, we now
present another method
that can be done at the
VM level. As explained
before, the Linux kernel
implements the proc

pseudo-filesystem which
provides an interface to
kernel data structures.
The /proc/stat file pro-
vides time-slice statistics
across user, system, and idle processes from the time the
system boots up. In our deployment, the Linux time slice is
configured to 10ms.

Inspired by the “gap” shown in Figure 10 earlier, it is pos-
sible for users to monitor the gap at the VM level. The gap

is caused by a phenomenon where a time slice in the VM is

actually (and significantly) less than 10ms because the hy-

pervisor is handling EPT violations. Thus, we can introduce
a simple metric, vCPU Efficiency, which is the sum of all the
time-slice values in /proc/stat (user, sys, and idle values)
divided by the real time slices that have elapsed (since the
last time we read /proc/stat). The metric should be near
100%, but when EPT violation is high, it is expected that the
efficiency will be much lower than 100%.

Table 5 shows vCPU Efficiency and the job execution time
for the same experiments we ran before. Here, we select
one “heavy” and one “light” application, where the heavy
application uses all 6 available cores per job and the light
application uses 1 core per job. We can see that for heavy
workloads, there is a large difference in vCPU Efficiency and

Mitigation Pros Cons

Using Huge
Pages

Performance is
close to bare metal
nodes.

Huge page VMs are
more complicated
to configure, and
less flexible. Ben-
efits of huge pages
could be offset with
even larger memory
size and memory
usage.

Restarting
VM

Performance is best
after restarting.

The system must
support job check-
pointing. Longer
down time.

Defragmenting
Memory

Performance is im-
proved, short down
time.

Cannot provide the
best performance.
Improvement is
only temporary.

Running on
bare metal

Performance is best
and sustainable.

Does not provide
the flexibility,
management advan-
tages, nor security
isolation of VMs

Using public
clouds

Based on one-week
experiments, the
performance is best
and sustainable.
Easy to manage.

higher costs for
some workloads.

Table 6: Pros and cons of five mitigation methods, §5.2.

execution time. For example, when vCPU Efficiency drops
from 99% to 83%, the resulting job execution time increases
from 16 to 39 hours.

The disadvantage of this method is that we cannot detect
VM aging unless we run a heavy application that can be im-
pacted by the aging. Table 5 shows that for a light applica-
tion, there is no visible difference in the vCPU Efficiency and
execution time, even though the VM is already degraded at
the time of running. We also want to emphasize that VM ag-
ing cannot be crudely defined by the number of days a VM
has been up running. In our deployment, VMs age fast (after
3-6 days) because we ran complex bioinformatics pipelines.

5.2 Mitigations

This section describes several ways that we tried to address
the problem. The choice of which mitigation to use depends
upon the system requirements, and system adminstrators will
need to decide which mitigation technique works best for
them. Table 6 summarizes the pros and cons of the mitiga-
tion techniques we discuss below.

Using Huge Pages Just like a standard page table, the EPT
size increases as the memory grows larger. Also the smaller
the page size, the higher the probability of misses. Increasing
the page size to 1MB for example (i.e. using “huge” pages)
shrinks the size of the EPT table and reduces the probability
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Restart Strategy Jobs per day

Proactive restart 1.92
Slowdown-triggered restart 1.69
No restart 1.23

Table 7: Rebooting VM mitigation, §5.2.

of misses. However, in GPAS this is not an easy option to
adopt. Huge page VMs are less flexible. Configuring and de-
bugging huge page VMs in a production environment takes
time. Hence, it is not easy to reconfigure and troubleshoot
all the machines with a huge page configuration. In addition,
a huge page size that is “huge” enough for now is not a per-
manent solution given the growing sizes of memory and the
increasing application memory usage expected in the future
[30]. Another option is to keep the 4KB page unit, but al-
locate smaller VMs to reduce memory fragmentation. How-
ever, in GPAS, resource requirements differ across jobs, and
many jobs require large memory VMs.

Restarting VMs to avoid performance degradation An-
other method is to restart the VMs occasionally to “reset”
the memory fragmentation. According to Figure 11, it is
possible to detect EPT violations early before performance
degrades significantly. With such a detection, we can de-
cide when is a proper time to restart. We conducted a sim-
ple experiment with the same jobs as in Figure 11. Table 7
shows that restarting increase the number of jobs finished per
day. Here, “proactive restart” implies restarting the VM af-
ter every job finishes (i.e., do not reuse the VM across jobs)
and “slowdown-triggered restart” implies restarting when the
monitored vCPU Efficiency drops below 90%. The through-
put numbers in Table 7 might also suggest that restarting in
the middle of a long job might improve its execution time.
However, this requires checkpointing the job progress, which
a feature that is not supported in GPAS.

Defragmenting Memory The burst of EPT violations in
aging VMs is essentially caused by the loss of data locality
of the VM memory on the host physical memory. We can use
the built-in memory defragmentation tool in Linux to reorga-
nize the memory layout. A simple experiment with VarScan2
workloads shows that defragmentation indeed helps decrease
EPT violations. As shown in Table 8, the test runs 21% faster
after defragmentation when the VM has been heavily used
for 7 days. The number of EPT violations during the test is
decreased by 58%. However, comparing to performance of
the fresh state, this method is still 44% slower and EPT vio-
lations are nearly 100 times more. In other words, memory
defragmentation can be a temporary method to improve per-
formance by a small margin, but restarting VMs leads to a
better outcome.

Running on Bare Metal In GPAS, the most viable al-
ternative is to run jobs directly on bare metal nodes without

VM age Exec. Time (s) EPT violations

0 day 587 630,636
7 days 1,073 140,677,142
7 days, defragmented 847 58,607,955

Table 8: Memory defragmentation, §5.2.
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Figure 13: Gaussian density estimation on processing
rate, §5.2. Gaussian density estimation has been applied to pro-

cessing rate of jobs for four pipelines Histograms are also shown

for each pipelines. Vertical lines show where the 95th percentile

processing rate resides for bare metal nodes and VMs.

VMs. The caveat is that not all research projects (jobs) can
run in this mode; some research projects require the security
isolation provided by running the jobs in a secure VM. For
this reason, GPAS now uses a combination of bare-metal
and VM deployments. The statistics presented below are
from job pipelines that have more than one hundred jobs on
bare metal nodes.

In Figure 13, a Gaussian kernel density estimation is cal-
culated for jobs of four particular pipelines on bare metal
(BM) nodes and VMs. Bare-metal jobs exhibit much less
variance than VM jobs (the bell shapes of bare-metal jobs
are more localized across the x-axis). In addition, bare-metal
jobs have higher processing rate than VM jobs. The 95th
percentile processing rate is marked in the graphs. Note that
the processing rate tail of the bare metal jobs is relatively
short.

Table 9 shows the performance improvements of using
bare metal vs VMs for the fifteen GPAS pipelines that had at
least 100 or more bare metal jobs. The processing rate im-
provement (in %) at is shown in the table for different per-
centiles. For example, the 95th percentile processing rate is
improved by between 22% and 95%. The average perfor-
mance improvement is between 18% and 87% (not shown).

In summary, given these benefits, the GDC platform uses
a combination of bare metal and VM nodes, which provides
good performance, but more complexity when scheduling
jobs and more overhead when managing nodes.

Using Public Clouds We next turn to the question of
whether there are problems with long running bioinformatics
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Percentile Improvement Percentile Improvement

25
th 14 – 78 95

th 22 – 95
median 18 – 79 97

th 20 – 97
75

th 19 – 81 max 28 – 100

Table 9: Running on bare metal, §5.2. Processing rate

improvements on different percentiles by running jobs on bare metal

nodes are listed in the table.

pipelines on the virtualization stacks used in public clouds.
Different virtualization stacks are likely to use different ap-
proaches, which may, or may not, have the same issues with
EPT violations. Some vendors [31, 32] recommend in their
documentation that VMs with large memories use configu-
rations with huge page memory, but with no more specific
guidance given. On the other hand, hypervisors such as
Xen, use an approach to implement virtual machine mem-
ory management that directly maps guest virtual address to
host physical address (called direct paging). For this reason,
they do not incur any additional overhead when resolving the
mapping from guest to host, as KVM does.

We did experiments using Amazon Web Services (AWS)
and Google Cloud Platform (GCP) to understand whether
there are any problems with long running bioinformatics
pipelines in their virtualization stacks. To simplify the ex-
periments, we ran VarScan2 using open access data so that
the full security and compliance infrastructure normally re-
quired by GPAS would not have to be used.

Amazon Web Services has developed their own Nitro sys-
tem based on KVM. We rented a dedicated host (z1d) and
allocated a large memory VM (12xlarge). The one-week ex-
periment does not show performance degradation. For the
dataset we used, the minimum execution time is 3.6 hours
and the maximum is 3.9 hours, as shown in Table 10. Nitro
may offload many tradition virtualization functions to dedi-
cated hardware, which we suspect avoids the address trans-
lation overhead.

Google Cloud Platform also developed their hypervisor
based on KVM [33]. We rented a 96-core sole-tenant host
to avoid sharing with other users and allocated a 90-core
576GB VM on the host. We repeated the same experiment
while scaling the maximum number of jobs to 14. The ex-
periment results also does not show any degradation either.
The minimum and maximum execution times are 5.7 and 6.0
hours, respectively. Although they use KVM, the same prob-
lem might not appear due to one of the following potential
reasons: they use huge pages; they use software-based mem-
ory management instead of EPT; or the CPUs they use have
larger TLBs.

In summary, public cloud platforms do not have the
problems with performance degradation for long running
pipelines that we observed with our on-premise Open-
Stack/KVM platform. On the other hand, as mentioned, the

Tests Min (hrs) Max (hrs)

One on-prem VM 36 10 15.3
Amazon Web Services 69 3.6 3.9
Google Cloud Platform 98 5.7 6.0

Table 10: DNA alignment workload execution time on
public cloud, §5.2.

large scale GPAS on-premise system has lower costs than
public clouds for many of the GDC workloads.

For all of the reasons stated in this section, the GDC plat-
form uses a combination of VM and bare-metal, with oc-
casional VM restarts. The GDC also uses public clouds
for some workloads, to provide flexibility, and for burst
computing. In summary the GDC today uses a hybrid on-
premise/public cloud to take advantage of the flexibility of
public clouds and the lower costs provided by large scale on-
premise clouds for some workloads.

6 Future Challenges

After addressing the EPT violation problem, our future goal
is to improve resource utilization of our cluster. The GPAS
job management system runs jobs that are encapsulated as
CWL workflows [7] and Dockerized. Data that is submit-
ted to the GDC are organized into projects or portions of a
project called batches. First, GPAS must schedule differ-
ent competing projects/batches. For simplicity, we will just
describe the process for scheduling projects, since schedul-
ing batches is similar but more complicated. Projects typi-
cally contain multiple data types and the appropriate CWL
pipelines must be run over each data type. In the first step,
GPAS schedules the running of the required CWL pipelines
over the different data types in each project. In the second
step, CWLtool processes the DAG in the CWL pipeline and
schedules each step in the DAG. In the third step, SLURM
manages the running of jobs submitted by CWLtool on the
VM pool of the available compute nodes.

Currently, each bioinformatics pipeline is encapsulated in
a single CWL workflow that is containerized, and the con-
tainer is scheduled and assigned to a virtual machine for ex-
ecution. The pipelines were developed by the research com-
munity over a period of time and some employ threads ef-
ficiently, while others are less efficient. Since portions of
pipelines may be either CPU-bound or I/O bound, inefficien-
cies can arise. For example, Figure 14 shows five Somatic-
Variant-Calling (I/O intensive) jobs consuming different in-
put files. The left figure shows that I/O utilization is full but
the total bandwidth is lower than the maximum bandwidth
of the hard drive (due to seek contention). The right fig-
ure shows that for most of the time, CPU is spent in waiting
for I/O. The end part (5PM) of the figure also highlights the
problem in the last paragraph where there is low I/O activity
but the CPUs are not fully utilized.

468    2021 USENIX Annual Technical Conference USENIX Association



| CURRENT: | PROPOSED:

P1: | A1 A2 A3 B1 B2 B3 | A1 A2 A3

P2: | A3 B3 | B1 B2 A3 B3

P3: | | B3

Time: | 1 2 3 4 5 6 | 1 2 3 4

Inefficiencies can also arise due to the fact that currently
GPAS assigns a VM per CWL container, and different por-
tions of the CWL workflow benefit from different number of
processors. As a specific example, assume we have a ma-
chine with three processors (P1–P3), and two jobs A and B,
each of which has three serialized tasks (1, 2, 3) and task# 3
runs as threads. Assume that the maximum resource that A
and B need are two processors, but that these are just needed
for a portion of the pipeline. In this case, we have a classical
scheduling allocation problem, if we devote two processors
for A and B, then there are periods in which the CPUs are
under utilized as shown in the Figure (the white spaces).

It would be more efficient to allocate the processors as
shown on the right, where we allow both jobs A and B to be
assigned on the same machine even though the total proces-
sors needed exceeds the number of processors (4 > 3). A
simple simulation of some jobs in our cluster shows such an
approach like this can increase CPU utilization up to 20%
and reduce job execution time up to 15%.

While there is a vast literature on job/task scheduling (see
Section 7), the challenge here is that the CWL worfklows
must either be rewritten and an appropriate scheduling algo-
rithm used or the CWL execution engine itself must have a
greater ability to parallelize portions of the DAG being ex-
ecuted. Both of these approaches are currently being devel-
oped.

7 Related work

We now discuss related work briefly for space (please see
our supplemental material for more [10]).

The introduction of EPT is aimed to increase the perfor-
mance of VM memory management. In its early stage of
development, many found it to be effective in reducing the
translation overhead compared to software-based solutions
[34]. Multiple recent studies [4, 35–37] show that short-

term benchmarks running on more advanced modern CPUs,
the overhead from TLB misses and EPT violations is small
and the VM performance is comparable to bare-metal perfor-
mance. We found this is not true for our large bioinformatics
jobs. Huge pages can reduce TLB misses to a large extent
[38, 39], but it is not always a viable solution. More recent
research in the community [30, 40–44] has devoted them-
selves to devise a better virtual memory management or mit-
igate the overhead of TLB misses. Another lesson that can be
taken here is the need for tools to quickly reproduce memory
(allocation) aging just like the popular utility of filesystem
aging tools [45–53].
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Figure 14: CPU under utilization.

On task scheduling, the literature is also rich on techniques
that suggest finer-grained scheduling [54–56], better fairness
[57–61], VM/Container backup/migration [62–64], hybrid
scheduling [65–67]. The majority of the literature is con-
cerned with optimizing new jobs that are written for a sys-
tem, while the challenge with GPAS is parallelizing batches
of older pipelines, most of which were designed for a sin-
gle multi-core machine running a single job rather than for
processing large datasets of multiple heterogeneous jobs run-
ning on a distributed platform.

8 Conclusion

To the best of our knowledge, we are the first to conduct a
prolonged performance evaluation of virtualization stack for
jobs that are both long running and memory intensive, such
as bioinformatics jobs, and hence causing extreme virtual
memory fragmentation. Diagnosing this problem has been
a long and onerous process, primarily because the problem
cannot be quickly reproduced; every experiment must be re-
peated for days to provide the evidence required. We hope
the contributions of this paper can help other deployments
similar to ours and lead to new research activities (e.g., mem-
ory aging tools).
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