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ABSTRACT

MittOS provides operating system support to cut millisecond-

level tail latencies for data-parallel applications. In MittOS,

we advocate a new principle that operating system should

quickly reject IOs that cannot be promptly served. To achi-

eve this, MittOS exposes a fast rejecting SLO-aware inter-

face wherein applications can provide their SLOs (e.g., IO

deadlines). If MittOS predicts that the IO SLOs cannot be

met, MittOS will promptly return EBUSY signal, allowing the
application to failover (retry) to another less-busy node with-

out waiting. We build MittOS within the storage stack (disk,

SSD, and OS cache managements), but the principle is ex-

tensible to CPU and runtime memory managements as well.

MittOS’ no-wait approach helps reduce IO completion time

up to 35% compared to wait-then-speculate approaches.
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1 INTRODUCTION

Low and stable latency is a critical key to the success of many
services, but variable load and resource sharing common in
cloud environments induces resource contention that in turn
produces “the tail latency problem.” Early efforts to cut la-
tency tails focused on coarse-grained jobs (tens to hundreds
of seconds) [20], where there is sufficient time to wait, ob-
serve, and launch extra speculative tasks if necessary. Such a
“wait-then-speculate” method has proven to be highly effec-
tive; many variants of the technique have been proposed and
put into widespread use [11, 51, 60]. More challenging are
applications that generate large numbers of small requests,
each expected to finish in milliseconds. For these, techniques
that “wait-then-speculate” are ineffective, as the time to de-
tect a problem is comparable to the delay caused by it.

One approach to this challenging problem is cloning, where
every request is cloned to multiple replicas and the first to re-
spond is used [11, 55]; this proactive speculation however
doubles the IO intensity. To reduce extra load, applications
can delay the duplicate request and cancel the clone when a
response is received (a “tied requests”) [19]; to achieve this,
IO queueing and revocation management must be built in

the application layer [15]. A more conservative alternative is
“hedged requests” [19], where a duplicate request is sent after
the first request is outstanding for more than, for example, the
95th-percentile expected latency; but the slow requests (5%)
must wait before being retried. Finally, “snitching” [1, 52]
– the application monitoring request latency and picking the
fastest replica – can be employed; however, such techniques
are ineffective if noise is bursty.

All of the techniques discussed above attempt to minimize
tail in the absence of information about underlying resource
busyness. While the OS layer may have such information, it
is hidden and unexposed. A prime example is the read() in-
terface that returns either success or error. However, when
resources are busy (disk contention from other tenants, de-
vice garbage collection, etc.), a read() can be stalled inside
the OS for some time. Currently, the OS does not have a di-
rect way to indicate that a request may take a long time, nor
is there a way for applications to indicate they would like “to
know the OS is busy.”
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To solve this problem, we advocate a new philosophy: the

OS should be aware of application SLOs and quickly reject

IOs with unmet SLOs (due to resource busyness). The OS
arguably knows “everything” about its resources, including
which resources suffer from contention. If the OS can quickly
inform the application about a long service latency, applica-
tions can better manage impacts on tail latencies. If advanta-
geous, they can choose not to wait, for example performing
an instant failover to another replica or taking other correc-
tive actions.

To this end, we introduce MITTOS (pronounced “mythos”),
an OS that employs a fast rejecting SLO-aware interface to
support millisecond tail tolerance. We materialize this con-
cept within the storage software stack, primarily because stor-
age devices are a major resource of contention [15, 28, 36, 42,
50, 53, 58]. In a nutshell, MITTOS provides an SLO-aware
read interface, “read(...,slo),” such that applications can
attach SLOs to their IO operations (e.g., “read() should not
take more than 20ms”). If the SLO cannot be satisfied (e.g.,
long disk queue), MITTOS immediately rejects the IOs and
returns EBUSY (i.e., no wait), hence allowing the application
to quickly failover (retry) to another node.

The biggest challenge in supporting a fast rejecting inter-
face is the development of latency prediction used to deter-
mine whether the IO request should be accepted or rejected
(returning EBUSY). Such prediction requires understanding the
nature of contention and queueing discipline of the under-
lying resource (e.g., disk spindles vs. SSD channels/chips,
FIFO vs. priority). Furthermore, latency prediction must be
fast; the computing effort to produce good predictions should
be negligible to maintain high request rates. Finally, predic-
tion must be accurate; vendor variations and device idiosyn-
crasies must be incorporated.

We demonstrate that these challenges can be met; we will
describe our MITTOS design in four different OS subsys-
tems: the disk noop scheduler (MITTNOOP), CFQ sched-
uler (MITTCFQ), SSD management (MITTSSD), and OS
cache management (MITTCACHE). Collectively, these cover
the major components that can affect an IO request latency.
Our discussion will also cover the key design challenges and
exemplar solutions.

To examine MITTOS can benefit applications, we study
data-parallel storage such as distributed NoSQL systems. Ex-
amination shows that many NoSQL systems (e.g., MongoDB)
do not adopt tail-tolerance mechanisms (§2), and thus can
benefit from MITTOS support.

To evaluate the benefits of MITTOS in a real multi-tenant
setting, we collected statistics of memory, SSD, and disk con-
tentions in Amazon EC2, observed from the perspective of
a tenant (§6). Our most important finding is that the “noisy

Def. TO Fail- Hedged/

TT Val. over Clone Tied

Cassandra × 12s × ×

Couchbase × 75s × × ×

HBase × 60s ×

MongoDB × 30s × × ×

Riak × 10s × × ×

Voldemort × 5s ×

Table 1: Tail tolerance in NoSQL. (As explained in §2).

neighbor” problem exhibits sub-second burstiness, hence coa-
rse latency monitoring (e.g., snitching) is not effective, but
timely latency prediction in MITTOS will help.

We evaluate our MITTOS-powered MongoDB in a 20-node
cluster with YCSB workloads and the EC2 noise distribution.
We compare MITTOS with three other standard practices
(basic timeout, cloning, and hedged requests). Compared to
hedged requests (the most effective among the three), MIT-
TOS reduces the completion time of individual IO requests
by 23-26% at p951 and 6-10% on average. Better, as tail la-
tencies can be amplified by scale (i.e., a user request can com-
prise S parallel requests and must wait for all to finish), with
S=5, MITTOS reduces the completion time of hedged re-
quests up to 35% at p95 and 16-23% on average. The higher
the scale factor, the more reduction MITTOS delivers.

In summary, our contributions are: the finding of low tail-
tolerance in some popular NoSQL systems (§2), the new con-
cept and principles of MITTOS (§3), design and working ex-
amples of MITTOS design in disk, SSD, and OS cache man-
agements (§4), the statistics of sub-second IO burstiness in
Amazon EC2 (§6), and demonstration that MITTOS-powered
storage systems (MongoDB and LevelDB) can leverage fast
IO rejection to achieve significant latency reductions in com-
pared to other advanced techniques (§7). We close with dis-
cussion, related work, and conclusion.

2 NO “TT” IN NOSQL

The goal of this section is to highlight that not all NoSQL sys-
tems have sufficient tail-tolerance mechanisms (“no ’TT’ in
NOSQL”). We analyzed six popular NoSQL systems (listed
in Table 1), each ran on 4 nodes (1 client and 3 replicas),
generated thousands of 1KB reads with YCSB [18], and emu-
lated a severe IO contention for one second in a rotating man-
ner across the three replica nodes (to emulate IO burstiness;
§6), and finally analyzed if there is any timeout/failover.

Table 1 summarizes our findings. First, the “Def. TT” col-
umn suggests that all of them (in their default configurations)
does not failover from the busy replica to the less-busy ones;
Cassandra employs snitching, but is not effective with 1sec

1We use “pY ” to denote the Y th -percentile; for example, p90 implies the
90th -percentile (y=0.9 in CDF graphs).
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Instant
Failover
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Figure 1: MITTOS Deployment Model (§3.1).

rotating burstiness (as evaluated later in §7.8.3). Second, the
“TO Val.” column provides the reason; by default, the time-
out values are very coarse-grained (tens of seconds), thus
an IO can stall for a long time without being retried. Third,
to exercise the timeout, we set it to 100ms and surprisingly
we observed that three of them do not failover on a timeout
(the “Failover” column); undesirably, the users receive read
errors even though less-busy replicas are available. Finally,
we analyzed if more advanced techniques are supported and
found that only two employ cloning and none of them em-
ploy hedged/tied requests (the last two columns).

3 MITTOS OVERVIEW

3.1 Deployment Model and Use Case

MITTOS suits the deployment model of data-parallel frame-
works running on multi-tenant machines, as illustrated in Fig-
ure 1. Here, every machine has local storage resources (e.g.,
disk) directly managed by the host OS. On top, different
tenants/applications (A...D) share the same machine. Let us
consider a single data-parallel storage (e.g., MongoDB) de-
ployed as applications A1−A3 across machines #1-3 and the
data (key-values) will be replicated three times across the
three machines. Imagine a user sending two parallel requests
R1 to A1 and R2 to A2, each supposedly takes only 10ms (the
term “user” implies the application’s users). If the disk in
machine #2 is busy because other tenants (B/C/D) are busy
using the disk, ideally MongoDB should quickly retry the
request R2 to another replica A3 on machine #3.

In wait-and-speculate approaches, request R2 is only re-
tried after some time has elapsed (e.g., 20ms), resulting in
R2’s completion time of roughly 30ms, a tail latency 3x longer
than R1’s latency. In contrast, MITTOS will instantly return
EBUSY (no wait in the application), resulting in a completion
time of only 10+e ms; e is a one-hop network overhead.

In the above model, MITTOS is integrated to the host OS

layer from where applications can get direct notification of
resource busyness. However, our model is similar to container-
or VM-based multi-tenancy models, where MITTOS can be
integrated jointly across the host OS and VMM or container-
engine layers. For faster research prototyping, in this paper
we mainly focus on direct application-to-host model, but MIT-
TOS can also be extended to the VMM layer. MITTOS prin-
ciples will remain the same across these models.

SLO = 20ms;

ret = read(..,SLO);

if (ret == EBUSY)
  // failover

EB
US
Y

1

2
4

5

Disk queue

App MittOS

Figure 2: MITTOS use-case illustration (§3.2).

3.2 Use Case

Figure 2 shows a simple use-case illustration of MITTOS.
1⃝ The application (e.g., MongoDB) creates an SLO for a

user. In this paper, we use latency deadline (e.g., <20ms) as
a form of SLO, but more complex forms of SLO such as
throughput or deadline with confidence interval can be ex-
plored in future work (§8.1). We use the 95th-percentile la-
tency as the deadline value, which we will discuss more in
Sections 7.2 and 8, to what value a deadline should be set.
2⃝ The application then tags read() calls with the deadline

SLO. To support this, we create a new read() system call
that can accept application SLO (essentially one extra argu-
ment to the existing read() system call). 3⃝ As the IO re-
quest enters a resource queue in the kernel, MITTOS checks
if the deadline SLO can be satisfied. 4⃝ If the deadline SLO
will be violated in the resource queue, MITTOS will instantly
return EBUSY error code to the application. 5⃝ Upon receiving
EBUSY, the application can quickly failover (retry) the request
to another replica node.

3.3 Goals / Principles

MITTOS advocates the following principles.
• Fast rejection (“busy is error”): In the PC era, the

OS must be best-effort; returning busy errors is undesirable
as PC applications cannot retry elsewhere. However, in tail-
critical datacenter applications, best effort interface is insuf-
ficient to help applications manage ms-level tails. Datacen-
ter applications inherently run on redundant machines, thus
there is no “shame” for the OS to reject IOs. In large-scale
deployments, this principle works well, as the probability of
all replicas busy at the same time is extremely low (§6).
• SLO aware: Applications should expose their SLOs to

the OS, such that the OS only rejects IOs whose SLOs cannot
be met (due to resource busyness).
• Instant feedback/failover: The sub-ms fast rejection gives

ms-level operations more flexibility to failover quickly. Mak-
ing a system call and receiving EBUSY only takes <5µs ( 3⃝
and 4⃝ in Figure 2). Failing over to another machine ( 5⃝ in
Figure 2) only involves one more network hop (e.g., 0.3ms
in EC2 and our testbed or even 10µs with Infiniband [44]).
• Keep existing OS policies: MITTOS’ simple interface

extensions allow existing OS optimizations and policies to
be preserved. MITTOS does not negate nor replace all prior
advancements in the QoS literature. We only advocate that
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applications get notified when OS-level QoS policies fail to
meet user deadlines due to unexpected bursty contentions.
For example, even with CFQ fairness [2], IOs from high-
priority processes occasionally must wait for lower-priority
ones to finish. As another example, in SSDs, even with ad-
vanced isolation techniques, garbage collection or wear-level-
ing activities can induce a heavy background noise.
• Keep applications simple: Advanced tail-tolerance mech-

anisms such as tied requests and IO revocation are less needed
in applications. These mechanisms are now pushed to the
OS layer, which then can be reused by many applications.
In MITTOS, the rejected request is not queued (step 4⃝ in
Figure 2); it is automatically cancelled when the deadline is
violated. Thus, applications do not need to wait or revoke
IOs, nor they add more contentions to the already-contended
resources. MITTOS also keeps application failover logic sim-
ple and sequential (the sequence of 2⃝- 5⃝ in Figure 2).

3.4 Design Challenges

The biggest challenge of integrating MITTOS to a target re-
source and its management is the EBUSY prediction (i.e., whet-
her the arriving IO should be accepted or rejected). There
are three major challenges: (1) We must understand the con-
tention nature and queueing discipline of the target resource.
For example, in disks, the spindle is the resource of con-
tention, but in SSDs, parallel chips/channels exhibit inde-
pendent queueing delays. Furthermore, the target resource
can be managed by different queuing disciplines (noop/FIFO,
CFQ [2], anticipatory [32], etc.). Thus, EBUSY prediction will
vary across different resources and schedulers. (2) In terms
of performance overhead, latency prediction should ideally
be O (1) for every arriving IO. O (N ) prediction that iterates
through N pending IOs is not desirable. (3) In terms of ac-
curacy, different device types/vendors have different latency
characteristics (e.g., varying seek costs across disks, page-
level latency variability within an SSD).

4 CASE STUDIES

The goal of this section is to demonstrate that MITTOS prin-
ciples can be integrated to many resource managements such
as the disk noop (§4.1) and CFQ (§4.2) IO schedulers, SSD
(§4.3) and OS cache (§4.4) managements. In each integra-
tion, we describe how we address the three challenges (un-
derstanding the resource contention nature and fast and accu-
rate latency prediction).

4.1 Disk Noop Scheduler (MITTNOOP)

Our first and simplest integration is to the noop scheduler.
The use of noop for disk is actually discouraged, but the goal
of our description below is to explain the basic mechanisms
of MITTOS, which will be re-used in subsequent sections.

Resource and deadline checks: In noop, arriving IOs are
put to a FIFO dispatch queue whose items will be absorbed
to the disk’s device queue. The logic of MITTNOOP is rela-
tively simple: when an IO arrives, it calculates the IO’s wait
time (Twait ) given all the pending IOs in the dispatch and de-
vice queues. IfTwait>Tdeadline+Thop , then EBUSY is returned;
Thop is a constant of 0.3ms one-hop failover in our testbed.

Performance: A naive O (N ) way to perform a deadline
check is to sum all the N pending IOs’ processing times.
To make deadline check O (1), MITTNOOP keeps track the
disk’s next free time (Tnext F ree ), as explained below. The ar-
riving IO’s wait time is simply the difference of the current
and next free time (Twait=Tnext F ree−Tnow ). If the disk is cur-
rently free (Tnext F ree<Tnow ), the IO is submitted directly.

Accuracy: When an IO is accepted, MITTNOOP adds the
next free time with the predicted processing time to serve the
new IO (Tnext F ree+=TprocessNewIO ). To make Tnext F ree ac-
curate, TprocessNewIO must be precise. To achieve that, we
must profile the disk’s read/write latency, specifically the re-
lationships between IO sizes, jump distances, and latencies.
In a nutshell, TprocessNewIO is a function of the size and off-
set of the current IO, the last IO completed, and all the IOs in
the device queue. We defer the details to Appendix §A. Our
one-time profiling takes 11 hours (disk is slow).
Tnext F ree will automatically be calibrated when the disk

is idle (Tnext F ree=Tnow+TprocessNewIO ). However, under no-
idle period, a slight error in Tnext F ree+=TprocessNewIO will
accumulate over time as thousands/millions of IOs are sub-
mitted. To calibrate more accurately, we attachTprocessNewIO

and the IO’s start time to the IO descriptor, such that upon IO
completion, we can measure the “diff” of the actual and pre-
dicted processing time (Tdif f =TprocessActual−TprocessNewIO )
and then calibrate the next free time (Tnext F ree+=Tdif f ).

4.2 Disk CFQ Scheduler (MITTCFQ)

Next, we build MITTCFQ within the CFQ scheduler [2], the
default and most sophisticated IO scheduler in Linux. We
first describe the structure of CFQ and its policy.

Unlike noop, CFQ manages groups with time slices pro-
portional to their weights. In every group, there are three
service trees (RealTime/BestEffort/Idle). In every tree, there
are process nodes. In every node, there is a red-black tree

for sorting the process’ pending IOs based on their on-disk
offsets. Using ionice, applications can declare IO types (Re-
alTime/BestEffort/Idle and 0-7 priority level). CFQ policy al-
ways picks IOs from the RealTime tree first, and then from
BestEffort and Idle. In the chosen tree, it picks a node in
round robin style, proportional to its time slice (0-7 priority
level). Then, CFQ dispatch some or all the requests from the
node’s red-black tree. The requests will be put to a FIFO dis-
patch queue and eventually to the device queue.
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Resource and deadline checks: When an IO arrive, MITT-
CFQ needs to identify to which group, service tree, and pro-
cess node, the IO will be attached to. This is for predicting
the IO wait time, which is the sum of the wait times of the
current pending IOs in the device and dispatch queues as well
as the IOs in other CFQ queues that are in front of the priority
of the new IO’s node. This raises the following challenges.

Performance: To avoid O (N ) complexity, MITTCFQ ke-
eps track the predicted total IO time of each process node.
This way, we reduceO (N ) toO (P ) where P is the number of
processes with pending IOs in the CFQ queues. In our most-
intensive test with 128 IO-intensive threads, iterating through
all pending IOs’ descriptors in the naive O (N ) method costs
about 10-20µs. Our optimizations above (and more below)
bring the overhead down to <5µsper IO prediction.

Accuracy: With the method above, MITTCFQ can reject
IOs before they enter the CFQ queues. However, due to the
nature of CFQ, some IOs can be accepted initially, but if soon
new higher-priority IOs arrive, the deadlines of the earlier
IOs can be violated as they are “bumped to the back.” To
cancel such IOs, the O (P ) technique above is not sufficient
because a single process (e.g., MongoDB) can have differ-
ent IOs with different deadlines (from different users). Thus,
MITTCFQ adds a hash table where the key is a tolerable
time range and the values are the IOs with the same tolera-
ble time (grouped by 1ms). For example, a recently-accepted
IO (supposedly 6ms without noise) has a 25ms deadline but
only a 10ms wait time, hence its tolerable time is 9ms. If a
new higher-priority IO arrive with 6ms predicted processing
time, the prior IO is not cancelled, but its key changes from
9ms to 3ms. If another 6ms higher priority IO arrives, the
tolerable time will be negative (-3ms); all IOs with negative
tolerable time are rejected with EBUSY.

4.3 SSD Management (MITTSSD)

Latency variability in SSD is an ongoing problem [5, 6, 19].
Read requests from a tenant can be queued behind writes
by other tenants, or the GC implications (more read-write
page movements and erases). A 4KB read can be served in
100µs while a write and an erase can take up to 2ms and
6ms, respectively. While there are ongoing efforts to achieve
a more stable latency (GC impact reduction [29, 57] or isola-
tion [31, 36]), none of them cover all possible cases. For ex-
ample, under write bursts or no idle period, read requests can
still be delayed significantly [57, §6.6]. Even with isolation,
occasional wear-leveling page movements will introduce a
significant noise [31, §4.3].

Fortunately, not all SSDs are busy at the same time (§6),
a situation that empowers MITTSSD. A read-mostly tenant
can set a deadline of <1ms; thus, if the read is queued behind
writes or erases then the tenant can retry elsewhere.

Resource and deadline checks: There are two initial chal-
lenges in building MITTSSD. First, CFQ optimizations are
not applicable as SSD parallelizes IO requests without seek
costs; the use of noop is suggested [4]. While we cannot
reuse MITTCFQ, MITTNOOP is also not reusable. This is
because unlike disks where a spindle (a single queue) is the
contended resource [10, 39], an SSD is composed of multi-
ple parallel channels and chips. Calculating IO serving time
in the block-level layer will be inaccurate (e.g., ten IOs go-
ing to ten separate channels do not create queueing delays).
Thus, MITTSSD must keep track of outstanding IOs to ev-

ery chip, which is impossible without white-box knowledge
of the device (in commodity SSDs, only the firmware has full
knowledge of the internal complexity).

Fortunately, host-managed/software-defined flash [45] is
gaining popularity and publicly available (e.g., Linux Light-
NVM [14] on OpenChannel SSDs [7]). Here, all SSD in-
ternal channels, chips, physical blocks and pages are all ex-
posed to the host OS, which also manages all SSD manage-
ments (FTL, GC, wear leveling, etc.). With this new technol-
ogy, MITTSSD in the OS layer is possible.

As an additional note, a large IO request can be striped to
sub-pages to different channels/chips. If any sub-IO violates
the deadline, EBUSY is returned for the entire request; all sub-
pages are not submitted to the SSD.

Performance: Similar to MITTNOOP’s approach, MITT-
SSD maintains the next available time of every chip (as ex-
plained below), thus the wait-time calculation is O (1). For
every IO, the overhead is only 300 ns.

Accuracy: Making MITTSSD accurate involves solving
two more challenges. First, MITTSSD needs to know the
chip-level read/write latency as well as the channel speed,
which can be obtained from the vendor’s NAND specifica-
tion or profiling. For measuring chip-level queueing delay,
our profiler injects concurrent page reads to a single chip and
for channel-level queueing delay, concurrent reads to multi-
ple chips behind the same channel. As a result, for our Open-
Channel SSD: TchipNext F ree+= 100µs per new page read.
That is, a page (16KB) read takes 100µs (chip read and chan-
nel transfer); >16KB multi-page read to a chip is automati-
cally chopped to individual page reads. Thus,Twait =Tnow−
TchipNext F ree+(60µs×#IOSameChannel ). That is, the IO wait
time involves the target chip’s next available time plus the
number of outstanding IOs to other chips in the same chan-
nel, where 60µs is the channel queueing delay (consistent
with the 280 MBps channel bandwidth in the vendor specifi-
cation). If there is an erase,TchipNext F ree+=6ms.

Second, while read latencies are uniform, write latencies
(flash programming time) vary across different pages. Pages
that are mapped to upper bits of MLC cells incur 2ms pro-
gramming time, while those mapped to lower bits only incur
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1ms. To differentiate upper and lower pages, one-time pro-
filing is sufficient. Our profiled write time of the 512 pages
of every NAND block is “11111121121122...2112.” That is,
1ms write time is needed for pages #0-6, 2ms for page #7,
1ms for pages #8-9, and the middle pages (“...”) have a re-
peating pattern of “1122.” The pattern is the same for every
block (consistent with the vendor specification); hence, the
profiled data can be stored in an 512-item array.

To summarize, unlike disks, SSD internal complexity is
arguably more complex (in terms of address mapping and
latency variability). Thus, accurate prediction of SSD perfor-
mance requires white-box knowledge of the device.

4.4 OS Cache (MITTCACHE)

A user with accesses to a small working set might expect a
high cache hit ratio, hence the use of a small deadline. How-
ever, under memory space contention, MITTCACHE can in-
form the application of swapped-out data and and to retry
elsewhere (not wait) while the data is fetched from the disk.

Resource and deadline checks: For applications that read
OS-cached data via read(...,deadline), MITTCACHE only
adds a slight extension. First, MITTCACHE checks if the data
is in the buffer cache. If not, it simply propagates the deadline
to the underlying IO layer (§4.1-4.3), where if the deadline
is less than the smallest possible IO latency (the user expects
an in-memory read), EBUSY is returned. Else, the IO layer will
process the request as explained in previous sections.

The next challenge is for mmap()-ed file, which skips the
read() system call. For example, a database file can be mmap-
ed to the heap (myDB[]). If some of the pages are not memory
resident, an instruction such as “return myDB[i]” can stall
due to a page fault. Since no system call is involved, the OS
cannot signal EBUSY easily.

We explored some possible solutions including restartable
special threads and EBUSY callbacks. In the former, MITTCA-
CHE would restart the page-faulting thread and inform the
application’s master thread to retry elsewhere. In the latter,
the page-faulting thread would still be stalled, but the appli-
cation’s main thread must register a callback to MITTCACHE

in order to be notified. These solutions keep the mmap() se-
mantic but require heavy restructuring of the application.

We resort to a simpler, practical solution: adding an “addr
check()” system call. Before dereferencing a pointer to an
mmap-ed area, the application can make a quick system call
(e.g., addrcheck(&myDB[i], size, deadline), which walks
through the process’ page table and checks the residency of
the corresponding page(s).

Performance: We find addrcheck() an acceptable solu-
tion for three reasons. First, mmap() sometimes is used only

for the simplicity of traversing the database file (e.g., travers-
ing B-tree on-disk pointers in MongoDB), but not necessar-
ily for performance. Second, in storage systems, users typi-
cally read a large data range (>1KB); thus, no system call
is needed for every byte access. Third, existing buffer cache
and page table managements are already efficient; addrcheck
traverses existing hash tables in O (1). With these reasons
combined, using addrcheck() only adds a negligible over-
head (82ns per call); network latency (0.3ms) still dominates.

One caveat in MITTCACHE is that OS cache should be
treated differently than low-level storage. For fairness, MITT-
CACHE should continue swapping in the data in the back-
ground, even after EBUSY is already returned. Otherwise, the
OS cache is less populated with data from applications that
expect memory residency.

Accuracy: As MITTCACHE only looks up the buffer/page
tables, there is no accuracy issues. One other caveat to note,
MITTCACHE should return EBUSY to signal memory space
contention (i.e., swapped-in pages are swapped out again),
but not for first-time accesses. Note that MITTCACHE does
not modify existing page-eviction policies (§3.3). The OS
can be hinted not to swap out the pages that are being checked,
to avoid false positives.

4.5 Implementation Complexity

MITTOS is implemented in 3440 LOC in Linux v4.10
(MITTNOOP +MITTCFQ, MITTSSD, and MITTCACHE in
1810, 1450, and 130 lines respectively, and an additional 50
lines for propagating deadline SLO through the IO stack).

5 APPLICATIONS

Any application that employs data replication can leverage
MITTOS with small modifications. In this paper, we focus
on data-parallel storage such as distributed NoSQL.

•MITTOS-Powered MongoDB: Our first application is Mon-
goDB; being written in C++, MongoDB enables fast research
prototyping of new system calls usage. The following is a se-
ries of our modifications. (1) MongoDB can create one dead-
line for every user, which can be modified anytime. A user
can set the deadline value to the 95th-percentile (p95) ex-
pected latency of her workload (§7.2). For example, if the
workload mostly hits the disk, the p95 latency can be >10ms.
In contrast, if the dataset is small and mostly hits the buffer
cache, the p95 latency can be <0.1ms. (2) MongoDB should
use MITTOS’ read() or addrcheck() system calls to attach
the desired deadline. (3) If the first two tries return EBUSY, the
last retry (currently) disables the deadline (Prob (3NodesBusy)
is small; §6). Having MITTOS return EBUSY with wait time,
to allow a 4th retry to the least busy node (out of the three),
is a possible extension. (4) Finally, one last specific change
in MongoDB is adding an “exceptionless” retry path. Many
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Figure 3: Millisecond-level latency dynamism in EC2.
The figures are explained in Section 6. The 20 lines in Figure (a)-(f)

represent the latencies observed in 20 EC2 nodes.

systems (Java/C++) use exceptions to catch errors and retry.
In MongoDB, C++ exception handling adds 200 µs, thus we
must make a direct exceptionless retry path.

The core modification in MongoDB to leverage MITTOS
support is only 50 LOC, which mainly involves adding user’s
deadlines and calling addrcheck (MongoDB by default uses
mmap() to read data file). For testing MITTOS’ read() in-
terface, we also add read-based method to MongoDB in 40
LOC. For making one-hop, exceptionless retry path, we add
20 more lines of code. Finally, to evaluate MITTOS with
other advanced techniques, we have added cloning and hedg-
ed-request features to MongoDB for another 210 LOC.

• MITTOS-Powered LevelDB+Riak: To show that MIT-
TOS is applicable broadly, we also integrated MITTOS to
LevelDB. Unlike MongoDB, LevelDB is not a replicated sys-
tem, it is only a single-machine database engine for a higher-
level replicated system such as Riak. Thus, we perform a two-
level integration: we first modify LevelDB to use MITTOS
system calls, and then the returned EBUSY is propagated to
Riak where the read failover takes place. All of the modifica-
tions are only 50 LOC additions.

6 MILLISECOND DYNAMISM

For our evaluation (§7), we first present the case of ms-level
latency dynamism in multi-tenant storage due to the noisy
neighbor problem. To the best of our knowledge, no existing

work shows ms-level dynamism at the local resource level;
NAS/SAN latency profiles (e.g., for S3/EBS [22, 55]) exist
but the deep NAS/SAN stack prevents the study of dynamism
at the resource level. Device-level hourly aggregated latency
data [28] also exists but prevents ms-level study.

We ran three sets of data collections for disk, SSD, and OS
cache in EC2 instances with directly-attached “instance stor-
age,” shared by multiple tenants per machine. Many deploy-
ments use local storage for lower latency and higher band-
width [47]. The instance types are m3.medium for SSD and
OS cache and d2.xlarge for disk experiments (none of “m”
instances have disk). For each experiment, we spawn 20 nodes
for 8 hours on a weekday (9am-5pm). For disk, in each
node, 4KB data is read randomly every 100ms; for SSD,
4KB data is read every 20ms; for OS cache, we pre-read
3.5GB file (fit in the OS cache) and read 4KB random data
every 20ms. Their latencies without noise are expected to be
6-10ms (disk), 0.1ms (SSD), and 0.02ms (OS cache).

We ran more experiments to verify data accuracy. We re-
peat each experiment 3x on different weekdays (and still
obtain highly similar results). To verify the absence of self-
inflicted noises, ≥20ms sleep is used, otherwise “no-sleep”
instances will hit VCPU limit and occasionally freeze. An
“idle” instance (no data-collection IOs) only reads/writes 10
MB over 8 hours (0.4 KB/s). Finally, the 3.5GB file always
fits the OS cache.

Observation #1: Long tail latencies are consistently ob-

served. Figures 3a-c show the latency CDFs from the disk,
SSD, and cache experiments, where each line represents a
node (20 lines in each graph). Roughly, tail latencies start
to appear around p97 (>20ms) for disks, p97 (>0.5ms) for
SSD, and p99 (>0.05ms) for OS cache; the last one implies
the cached data is swapped out for other tenants (a VM bal-
looning effect [54]). The tails can be long, more than 70ms,
2ms, and 1ms at p99 for for disk, SSD, and OS cache, re-
spectively. Sometimes, some nodes are more busy than oth-
ers (e.g., >0.5ms deviation at p85 and p90 in Figure 3b).

A small resource-level variability can easily be amplified
by scale. If P fraction of the requests to a node observe tail
latencies, and a user request must collect N parallel sub-
requests to such nodes, probabilistically, 1−(1−P )N of user
requests will observe tail latencies [19]. We will see this scale
amplification later (§7.3).

Observation #2: Contentions exhibit bursty arrivals. As
a machine can host a wide variety of tenants with differ-
ent workloads, noise timings are hard to predict. Figures 3d-
f show the CDF of noise inter-arrival times (one line per
node). We define “noisy period”, bucketed to windows of
20ms (SSD/cache) or 100ms (disk), when the observed la-
tency is above 20ms, 1ms, and 0.05ms for disk, SSD, and
OS cache, respectively. If noises exhibit a high temporal lo-
cality, all lines would have a vertical spike at x=0. However,
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the figures show that noises come and go at various intervals.
Noise inter-arrival distributions also vary across nodes.

Observation #3: Mostly only 1-2 nodes (out of 20) are

busy simultaneously. This is the most important finding that
motivates MITTOS. Figure 3 shows the probability ofX nod-
es busy simultaneously (across the 20 nodes), which dimin-
ishes rapidly asX increases. For example, only 1 node is busy
in 25% of the time and only 2 nodes are busy in 5% of the
time. Thus, almost all the time, there are less-busy replicas
to failover to.

7 EVALUATION

We now evaluate MITTCFQ, MITTSSD, and MITTCACHE

(with the data set up in the disk, SSD, and OS buffer cache,
respectively). We use YCSB [18] to generate 1KB key-value
get() operations, create a noise injector to emulate noisy
neighbors, and deploy 3 MongoDB nodes for microbench-
marks, 20 nodes for macrobenchmarks, and the same number
of nodes for the YCSB client nodes. Data is always repli-
cated across 3 nodes; thus, every get() request has three
choices. For MITTCFQ and MITTCACHE, each node runs
on an Emulab d430 machine (two 2.4GHz 8-core E5-2630
Haswell with 64GB DRAM and 1TB SATA disk). For MITT-
SSD, we only have one machine with an OpenChannel SSD
(4GHz 8-core i7-6700K with 32GB DRAM and 2TB Open-
Channel SSD with 16 internal channels and 128 flash chips).

All the latency graphs in Figures 4 to 12 show the laten-
cies obtained from the client get() requests. In the graphs,
“NoNoise” denotes no noisy neighbors, “Base” denotes vanilla
MongoDB running on vanilla Linux with noise injections,
and “MittOS” or “Mitt” prefix denotes our modified Mon-
goDB running on MITTOS with noise injections. In most of
the graphs, even in NoNoise, there are tail latencies at p99.8-
p100 with a max of 50ms; our further investigation shows
three causes: around 0.03% is caused by YCSB (Java) stack,
0.08% by Emulab network contention, and 0.09% by disk
being slow (all of which we do not control at this point).

7.1 Microbenchmark Results

The goal of the following experiments is to show that MIT-
TOS can successfully detect the contention, return EBUSY in-
stantly, and allow MongoDB to failover quickly. We setup a
3-node MongoDB cluster and run our noise injector on one
replica node. All get() requests are initially directed to the
noisy node.

MITTCFQ: Figure 4a shows the results for MITTCFQ
in three lines. First, without contention (NoNoise), almost all
get() requests can finish in <20ms. Second, with the noise,
vanilla MongoDB+Linux (Base) experiences the noise im-
pacts (tail latencies starting at p80); the noise injector runs
4 threads of 4KB random reads, but with less priority than
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Figure 4: Latency CDFs from microbenchmarks. The

figures are explained in Section 7.1.

MongoDB. Third, still with the same noise but now with
MITTCFQ, MongoDB receives EBUSY (with a deadline of
20ms) and retries quickly to another replica, cutting tail la-
tencies towards the NoNoise line.

Figure 4b uses the same setup above but now the noise IOs
have a higher priority than MongoDB’s. The performance
of vanilla MongoDB (Base) is severely impacted (a devia-
tion starting at p0). However, MITTCFQ detects that the in-
queue MongoDB’s IOs are often less picked than the new
high-priority IOs, hence quickly notifying MongoDB of the
disk busyness.

MITTSSD: Figure 4c shows the results for MITTSSD
(note that we use our lab machine for this one with a local
client). First, SSD can serve the requests in <0.2ms (NoNoise).
Second, when read IOs are queued behind write IOs (the
noise), the latency variance is high (Base); the noise injector
runs a thread of 64KB writes. Third, with MITTSSD, Mon-
goDB instantly reroutes the IOs that cannot be served in 2ms
(the small gap between Base and MittSSD lines is the cost of
software failover).

MITTCACHE: Figure 4d shows the results for MITTCA-
CHE. First, in-memory read can be done in µs, but the net-
work hop takes 0.3ms (NoNoise). Second, as we throw away
about 20% of the cached data (with posix_fadvise), some
memory accesses trigger page faults and must wait for disk
access (tail latencies at p80). Finally, with MITTCACHE, Mon-
goDB can first check whether the to-be-accessed memory re-
gion is in the cache and rapidly retry elsewhere if the data is
not in the cache, removing the 20% long tail.
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7.2 MITTCFQ Results with EC2 Noise

Our next goal is to show the potential benefit of MITTOS
in a real multi-tenant cluster. We note that MITTOS is tar-
geted for deployment at the host OS (and VMM) level for
full visibility of resource queues. For this reason, we do not
run experiments on EC2 as there is no access to the host OS
level (running MITTOS as a guest OS will not be effective
as MITTOS cannot observe the contention from other VMs).
Instead, to mimic a multi-tenant cluster, in this evaluation
section, we apply EC2 noise distributions (§6) to our testbed.
Later (§7.8.1), we will also inject noises with macrobench-
marks and production workloads.

Methodology: We deploy a 20-node MongoDB disk-based
cluster, with 20 concurrent YCSB clients sending get() re-
quests across all the nodes. For the noise, we take a 5-minute
timeslice from the EC2 disk latency distribution across the
20 nodes (Figure 3a). We run a multi-threaded noise injec-

tor (in every node) whose job is to emulate busy neighbors at
the right timing. For example, if in node n at time t , the EC2
data shows a 30ms latency (while no noise is around 6ms),
then the noise injector will add IO noises that will make the
disk busy for 24ms (e.g., by injecting two concurrent 1MB
reads, where each will add 12ms delay).

Other techniques compared: Figure 5a shows the com-
parisons of MITTCFQ with other techniques such as hedged
requests, cloning, and application timeout. Base: As usual,
we first run vanilla MongoDB+Linux under a typical noise
condition; we will use 13ms, the p95 latency (Figure 5a)
for deadline and timeout values below. Hedged requests:
This is a strategy where a secondary request is sent after
“the first request [try] has been outstanding for more than
the 95th-percentile expected latency, [which] limits the ad-
ditional load to approximately 5% while substantially short-
ening the latency tail” [19]. More specifically, if the first try
does not return in 13ms, MongoDB will make a 2nd try to an-
other replica and take the first one to complete (the first try is
not cancelled). Cloning: Here, for every user request, Mon-
goDB duplicates the request to two random replica nodes
(out of three choices) and picks the first response. Applica-
tion timeout (TO): Here, if the first try does not finish in
13ms, MongoDB will cancel the first try and make a second
try, and so on. With MITTCFQ and application timeout, the
third try (rare, as alluded in Figure 3g) disables the timeout;
otherwise, users can undesirably get IO errors.

Results: We discuss Figure 5a from right- to left-most
lines. First, as expected, Base suffers from long tail latencies
(>40ms at p98), as occasionally the requests are “unlucky”
and hit a busy replica node.

Second, application timeout (AppTO line) must wait at least
13ms delay before reacting. The 2nd try will take at least
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Figure 5: MITTCFQ results with EC2 noise. The figures

are explained in Section 7.2.

another few ms for a disk read, hence AppTO still exhibits
around >20ms tail latencies above p95.

Third, cloning is better than timeout (Clone vs. AppTO) but
only above p95. This is because cloning can pick the faster
of the two concurrent requests. However, below p93 to p0,
cloning is worse. This is because cloning increases the load
by 2x, hence creating a self-inflicting noise in common cases.

Fourth, hedged strategy proves to be effective. It does not
significantly increase the load (below p95, Hedged and Base

are similar), but it effectively cuts the long tail (the wide
horizontal gap between Hedged and Base lines above p95).
However, we can still observe that hedged’s additional load
slightly delays other requests (Hedged is slightly worse than
Base between p92 and p95).

Finally, MITTCFQ is shown to be more effective. Our most
fundamental principle is that the first try does not need to
wait if the OS cannot serve the deadline. As a result, there is
a significant latency reduction above p95. To quantify our im-
provements, the bar graph in Figure 5b shows (at specific per-
centiles) the % of latency reduction that MITTCFQ achieved
compared to the other techniques.2 For example, at p95, MIT-
TCFQ reduces the latency of Hedged, Clone, and AppTO by
23%, 33%, and 47%, respectively. There is also a pattern
that the higher the percentiles, MITTCFQ’s latency reduc-
tions are more significant.

7.3 Tail Amplified by Scale (MITTCFQ)

The previous section only measures the latency of every in-
dividual IO, which reflects the “component-level variability”

2 % of Latency Reduction = (TOther−TMit tCFQ ) / TOther
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Figure 6: Tail amplified by scale (MITTCFQ vs. Hedged).
The figures are explained in Section 7.3.

in every disk/node. In other words, so far, a user request is es-
sentially a single get() request. However, component-level
variability can be amplified by scale [19]. For example, a user
request might need to fetch N data items by submitting S par-
allel get() requests and then must wait until all the S items
are fetched.

To show latency tail amplified by scale, we introduce “SF ,”
a scale factor of the parallel requests; for example, SF=5
means a user request is composed of 5 parallel get() re-
quests to different nodes. Figure 5a in the previous section
essentially uses SF=1. Figures 6a-c show the same figures
as in Figure 5a, but now with scaling factors of 2, 5, and 10.
Since, hedged requests are more optimum than cloning or ap-
plication timeout, we only compare MITTCFQ with Hedged.
We make two important observations from Figure 6.

First, again, hedged requests must wait before reacting. If
before, with SF=1 (Figure 5a), there are 5% (p95) of requests
that must wait for 13ms, now with SF=2, there are roughly
10% (p90) of requests that cannot finish by 13ms (the Hedged
line in Figure 6a). Similarly, with SF=5 and 10, there are
around 25% (p75) and 40% (p60) of requests that must wait
for 13ms, as shown in Figures 6b-c.

Second, MITTCFQ initially already cuts the tail latencies
of the individual IOs significantly; with SF=1, only 1% (p99)
of the IOs are above 13ms (Figure 5a). Thus, with scaling
factors of 5 and 10, only 5% and 10% of IOs are above 13ms
(MittCFQ lines in Figures 6b-c).

The bar graph in Figure 6d summarizes the % of latency
reduction achieved by MITTCFQ from the Hedged strategy
across the three scaling factors. With SF=10, MITTCFQ al-
ready reduces the latency by 36% starting at p75. Thus, MIT-
TCFQ reduces the overall average latency of Hedged by 23%
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Figure 7: MITTCACHE vs. Hedged. The figures are ex-

plained in Section 7.4. The left figure shows the same CDF plot

as in Figure 5a and the right figure the same %reduction bar plot

as in Figure 6b.
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Figure 8: MITTSSD vs. Hedged. The figures are explained

in Section 7.5. The left figure shows the same plot as in Figure 5a

and the right figure the same %reduction bar plot as in Figure 6b.

(x=Avg, SF=10 bar); note that “average” denotes the average
latencies of all IOs (not just the high-percentile ones).

7.4 MITTCACHE Results with EC2 Noise

Similarly, Figure 7 shows the success of MITTCACHE (20-
node results). All the data were originally in memory, but we
swapped out P% of the cached data, where P is based on the
cache-miss rate in Figure 3c. Another method to inject cache
misses is by running competing IO workloads, but such setup
is harder to control in terms of achieving a precise cache miss
rate. For this reason, we perform manual swapping. In terms
of the deadline, we use a small value such that addrcheck
returns EBUSY when the data is not cached. In Figure 7b, at
p90 and SF=1, our reduction is negative; our investigation
shows that this is from the uncontrollable network latency
(which dominates the request completion time). Similarly, in
Figure 7a, between p95 and p98, Hedged is worse than Base

due to the same networking reason.

7.5 MITTSSD Results with EC2 Noise

Unlike in prior experiments where we use 20 nodes, for
MITTSSD, we can only use our single OpenChannel SSD
in one machine with 8 core-threads. We carefully (a) parti-
tion the SSD into 6 partitions with no overlapping channels,
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Figure 9: Prediction inccuracy. (As explained in §7.6).

hence no contention across partitions, (b) set up 6 MongoDB
nodes/processes on a single machine serving only 6 concur-
rent client requests, each mounted on one partition, (c) pick
noise distributions only from 6 nodes in Figure 3b, and (d)
set the deadline to the p95 value, which is 0.3ms (as there is
no network hop).

While latency is improved with MITTOS (the gap between
MittSSD and Base in Figure 8a), we surprisingly found that
hedge (Hedged line) is worse than the baseline. After debug-
ging, we found another limitation of hedge (in MongoDB
architecture). In MongoDB, the server creates a request han-
dler for every user, thus 18 threads are created (for 6 clients
connecting to 3 replicas). In stable state, only 6 threads are
busy all the time. But for 5% of the requests (after the time-
out expires), the workload intensity doubles, making 12 thre-
ads busy simultaneously (note that SSD is fast, thus pro-
cesses are not IO bound). These hedge-induced CPU con-
tentions (12 threads on a 8-thread machine) cause the long
tail. Figure 8b shows the resulting % of latency reduction.

7.6 Prediction Accuracy

Figure 9 shows the results of MITTCFQ and MITTSSD ac-
curacy tests. For a more thorough evaluation, we use 5 real-
world block-level traces from Microsoft Windows Servers
(the details are publicly available [35, §III][3]), choose the
busiest 5 minutes, and replay them on just one machine. For
a fairer experiment, as the traces were disk-based, we re-rate
the trace 128x more intensive (128 chips) for SSD tests. For
each trace, we always use the p95 value for the deadline.

The % of inaccuracy includes: false positives (EBUSY is
returned, but TprocessActual ≤ Tdeadline ) and false negatives
(EBUSY is not returned, but TprocessActual > Tdeadline ). Dur-
ing accuracy tests, EBUSY is actually not returned; if error is
returned, the IO is not submitted to the device, hence the ac-
tual IO completion time cannot be measured, which is also
the reason why we cannot report accuracy numbers in real ex-
periments. Instead, we attach EBUSY flag to the IO descriptor,
thus upon IO completion, the accuracy can be measured.

Figure 9 shows the % of false positives and negatives over
all IOs. In total, MITTCFQ inaccuracy is only 0.5-0.9%. With-
out our precision improvements (§4.2), its inaccuracy can be
as high as 47%. MITTSSD inaccuracy is also only up to
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Figure 10: Tail sensitivity to prediction error. The figures

are described in Section 7.7.

0.8%. Without the improvements (§4.3), its inaccuracy can
rise up to 6% (no hard-to-predict disk seek time). The next
question is how far our predictions are off within the inaccu-
rate IO population. We found that all the “diff”s are <3ms
and <1ms on average, for disk and SSD respectively. We
leave further optimizations as future work.

7.7 Tail Sensitivity to Prediction Error

High prediction accuracy depends on detailed and complex
device performance model. This raises the question whether
a simpler model (but lower accuracy) can also be effective.
To investigate this, we use the same MITTCFQ experiment
in Section 7.2 but now we vary MITTCFQ’s prediction ac-
curacy by injecting false-negative and false-positive errors:
(a) False-negative injection implies that when MITTOS de-
cides to cancel an IO and return EBUSY, it has E% chance to
let the IO continue and not return EBUSY. Figure 10a shows
the latency implications when the false-negative rate is var-
ied (E=20-100). “No Error” denotes the current MITTCFQ’s
accuracy and 100% false negative reflects the absence of
MITTOS (i.e., similar to Base). (b) False-positive injection
implies that when IO actually can meet the deadline, MIT-
TOS instead will return EBUSY at E% rate. Figure 10b shows
the latency results with varying false-positive rates.

In both cases, results show that higher accuracy produces
shorter latency tail. False-negative errors only affect slow re-
quests, thus even 100% error rates only reduce MITTOS per-
formance to that of Base. On the other hand, false-positive
errors matter less at 20% rates, but at higher rates they trigger
large numbers of unnecessary failovers. In Figure 10b, with
100% false-positive rate, all IOs are retried, creating much
worse latency tail than Base.

7.8 Other evaluations

7.8.1 Workload Mix. We ran experiments that colocate
MITTOS + MongoDB with filebench and Hadoop Facebook
workloads [16]. We deployed filebench’s fileserver, varmail,
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Figure 11: MITTCFQ with macrobenchmarks and pro-
duction workloads. The figures are discussed in Section 7.8.1.

and webserver macrobenchmarks on different nodes (creat-
ing different levels of noise) and the first 50 Hadoop jobs
from the Facebook 2010 benchmark [16]. Figure 11a shows
the resulting performance of MITTCFQ, Hedged and Base.
The Base line shows that almost 15% of the IOs experience
long tail latencies (x>40ms above p85). Hedged shortens the
latency tail, but MITTCFQ is still more effective.

The y-axis of Figure 11b shows the % of latency reduc-
tion achieved by MITTCFQ compared to Hedged at every
percentile (i.e., an interpose layout of Figure 11a). The reduc-
tion is positive in overall (up to 41%), but above p99, Hedged
is faster. This is because the intensive workloads make our
MongoDB perform 3rd retries (with deadline disabled) in 1%
of the IOs, but the 3rd choices were busier than the first two.
On the other hand, in the Hedged case, it only tries to the 2nd
replica, and in this 1% case, the 2nd choices were less busy
than the 3rd ones. This problem can be addressed by extend-
ing MITTOS interface to return the expected wait time, with
which MongoDB can choose the shortest wait time when all
replicas return EBUSY.

7.8.2 vs. Tied Requests. One evaluation that we cou-
ld not fully perform is the comparison with the “tied requests”
approach [19, pg77]. In this approach, a user request is cloned
to another server with a small delay and both requests are
tagged with the identity of the other server (“tied”). When
one of them “begins execution,” it sends a cancellation mes-
sage to the other one. This approach was found very effective
for a cluster-level distributed file system [19].

We attempted to build a similar mechanism, however Mon-
goDB does not manage any IO queues (unlike the distributed
file system mentioned above). All incoming requests are sub-
mitted directly to the OS and subsequently to the device queue,
which raises three complexities. First, we found that most re-
quests do not “linger” in the OS-level queues (§4.1-4.2); in-
stead, the device quickly absorbs and enqueues them in the
device queue. As an implication, it is not easy to know when
precisely an IO is served by the device (i.e., the “begin exe-
cution” time). Device queue is in fact “invisible” to the OS;

p80
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Figure 12: C3 and bursty noises. The figure is described in

Section 7.8.3.

MITTOS can only record their basic information (size, off-
set, predicted wait time, etc.). Finally, it is not easy to build
a “begin-execution” signal path from the OS/device layer to
the application; such signal cannot be returned using the nor-
mal IO completion/EBUSY path, thus a callback must be built
and the application must register a callback. For these rea-
sons, we did not complete the evaluation with tied requests.

7.8.3 vs. Snitching/Adaptivity. Many distributed st-
orage systems employ a “choose-the-fastest-replica” feature.
This section shows that such existing feature is not effective
in dealing with millisecond dynamism. Specifically, we eval-
uated Cassandra’s snitching [1] and C3’s adaptive replica
selection [52] mechanisms. As C3 improves upon Cassan-
dra [52], we only show C3 results for graph clarity. Figure
12 shows that under sub-second burstiness, unlike MITTOS,
neither Cassandra nor C3 can react to the bursty noise (the
gap between NoBusy and Bursty lines). When we create an-
other scenario where one replica/disk is extremely busy (1B)
and two are free (2F) in 1-second rotating manner, the tail
latencies become worse (the 1B2F-1sec line is below p90).
We then decrease the noise rotating frequency and found that
they only perform well if the busyness is stable (a busy rota-
tion in every 5 seconds), as shown in the 1B2F-5sec line.

7.8.4 MittOS-powered LevelDB+Riak. Figure 13
shows the result of MITTOS integration to LevelDB+Riak
(§5). For this experiment, we primarily evaluate MITTCFQ
with disk-based IOs and use the same EC2 disk noise dis-
tribution. Figure 13a shows the resulting latency CDF (simi-
lar to earlier experiments), showing that MITTCFQ can also
help LevelDB+Riak to cut the latency tail. Figure 13b depicts
the situation over time from the perspective of a single node.
In this node, when the noise is high (the high number of out-
standing IOs make the deadline cannot be met), MITTOS in
this node will return EBUSY (the triangle points). But when
the noise does not break the deadline, EBUSY is not returned.

7.8.5 All in One. Finally, we enable MITTCFQ, MITT-
SSD, and MITTCACHE in one MongoDB deployment with
3 users whose data are mostly in the disk, SSD (flash cache),
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Figure 13: MITTOS-powered Riak+LevelDB. The figure

is explained in Section 7.8.4.

and OS cache, with three different deadlines, 20 ms, 2 ms,
and 0.1 ms for the three users, respectively. The SSD is moun-
ted as a flash cache (with Linux bcache) between the OS
cache and the disk, thus our MongoDB still runs on one par-
tition. On one replica node, we simultaneously injected three
different noises, disk contentions, SSD background writes,
and page swapouts. Put simply, we combine the earlier mi-
crobenchmarks (§7.1) into a single deployment. We obtained
results similar to Figure 4, showing that all MITTOS resource
managements can co-exist.

7.8.6 Writes Latencies. Our work only addresses read
tail latencies for the following reasons. In many storage frame-
works (MongoDB, Cassandra, etc.), writes are first buffered
to memory and flushed in the background, thus user-facing
write latencies are not directly affected by drive-level con-
tention. Even if the application flushes writes, most modern
drives employ (capacitor-backed) NVRAM to absorb writes
quickly and persistently. We ran YCSB write-only workloads
with disk noise and found that the Base and NoNoise latency
lines are very close to each other.

8 DISCUSSIONS

8.1 MITTOS Limitations

We identify two fundamental MITTOS limitations: (1) First,
besides hardware/resource-levelqueueing delays, the software
stack can also induce tail latencies. For example, an IO path
can traverse a rare code path that triggers a long lock con-
tention or inefficient loops. Such corner-case paths are hard
to foresee. (2) Second, while rare, hardware performance can
degrade over time due to many factors [21, 26, 27], or the
other way around, performance can improve as device wears
out (e.g., faster SLC programming time as gate oxide weak-
ens [24]). This suggests that latency profiles must be recol-
lected over time; a sampling runtime method can be used to
catch a significant deviation.

In terms of design and implementation, our current ver-
sion has the following limitations (which can be extended in

the future): (1) Currently, applications only pass deadline la-
tencies to MITTOS. Other forms of SLO information such
as throughput [53] or statistical latency distribution [37] can
be included as input to MITTOS. Furthermore, applications
must set precise deadline values, which could be a major bur-
den. Automating the setup of deadline/SLO values in general
is an open research problem [34]. For example, too many
EBUSYs imply that the deadline is too strict, but rare EBUSYs
and longer tail latencies imply that the deadline is too relaxed.
The open challenge is to find a “sweet spot” in between,
which we leave for future work. (2) MITTOS essentially re-
turns a binary information (EBUSY or success). However, ap-
plications can benefit from richer responses, for example,
predicted wait time (§7.8.1) or certainty/confidence of how
close to or far from the deadline the prediction is. (3) Our
performance models require white-box knowledge of the de-
vices and resources queueing policies. However, many com-
modity disks and SSDs do not expose their complex firmware
logic. Simpler and more generic device models can be ex-
plored, albeit with higher prediction errors (§7.7).

8.2 Beyond the Storage Stack

We believe that MITTOS principles are powerful and can be
applied to many other resource managements such as CPU,
runtime memory, and SMR drive managements.

In EC2, CPU-intensive VMs can contend with each other.
The VMM by default sets a VM’s CPU timeslice to 30ms,
thus user requests to a frozen VM will be parked in the VMM
for tens of ms [56]. With MITTOS, the user can pass a dead-
line through the network stack, and when the message is re-
ceived by the VMM, it can reject the message with EBUSY if
the target VM must still sleep more than the deadline time.

In Java, a simple “x = new Request()” can stall for seconds

if it triggers GC. Worse, all threads on the same runtime must
stall. There are ongoing efforts to reduce the delay [40, 43],
but we find that the stall cannot be completely eliminated;
in the last 3 months, we study the implementations of many
Java GC algorithms and find that EBUSY exception cannot be
easily thrown for the GC-triggering thread. MITTOS has the
potential to transform future runtime memory management.

Similar to GC activities in SSDs, SMR disk drives must
perform “band cleaning” operations [23], which can easily
induce tail latencies to applications such as SMR-backed key-
value stores [41, 46]. MITTOS can be applied naturally in
this context, also empowered by the development of SMR-
aware OS/file systems [9].

8.3 Other Discussions

With MittOS, should other tail-tolerant approaches be used?

We believe MITTOS handles a major source of storage tail
latencies (i.e., storage device contention). Ideally, MITTOS
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is applied to all major resources as discussed above. If MIT-
TOS is only applied to a subset of the resources (e.g., stor-
age stack only), then other approaches such as hedged/tied
requests are still needed and can co-exist with MITTOS.

Can MittOS’ fast replica switching cause inconsistencies?

MITTOS encourages fast failover, however many NoSQL
systems support eventually consistency and generally attempt
to minimize replica switching to ensure monotonic reads. M-
ITTOS-powered NoSQL can be made more conservative abo-
ut switching replicas that may lead to inconsistencies (e.g.,
do not failover until the other replicas are no longer stale).

Can MittOS expose side channels? Some recent works
[33, 63] show that attackers can use information exposed
by the OS (e.g., CPU scheduling [33], cache behavior [62]).
MITTOS can potentially make IO side channels more effec-
tive because an attacker can obtain a less noisy signal about
the I/O activity of other tenants. We believe that even without
MITTOS, attackers can deconstruct the noises by probing IO
performance periodically, however more research can be con-
ducted in this context.

9 RELATED WORK

Storage tails: A growing number of work has investigated
many root causes of storage latency tail, including multi ten-
ancy [31, 36, 42, 53], maintenance jobs [10, 15, 39], inef-
ficient policies [30, 38, 58], device cleaning/garbage collec-
tion [8, 19, 31, 36, 57], and hardware variability [28]. MIT-
TOS does not eliminate these root causes but rather expose
the implied busyness to applications.

Storage tail tolerance: Throughout the paper, we discussed
solutions such as snitching/adaptivity [1, 52], cloning at var-
ious different levels [11, 55], hedged and tied requests [19].

Performance isolation (QoS): A key to reduce performance
variability is performance isolation, such as isolation of CPU
[61], IO throughput [25, 50, 53], buffer cache [42], and end-
to-end resources [12, 17]. QoS-enforcements do not return
busy errors when SLOs are not met; they provide “best-effort
fairness.” MITTOS is orthogonal to this class of work (§3.3).

OS transparency: MITTOS in spirit is similar to other wor-
ks that advocate more information exposure to applications
[13] and first-class supports for interactive applications [59].
MITTOS provides busyness transparency by slightly modify-
ing the user-kernel interfaces (mainly for passing deadlines
and returning EBUSY).

10 CONCLUSION

Existing application-level tail-tolerant solutions can only gu-
ess at resource busyness. We propose a new philosophy: OS-
level SLO awareness and transparency of resource busyness,
which eases applications’ tail and other performance man-
agement. In a world where consolidation and sharing are a

fundamental reality, busyness transparency, as embodied in
the MITTOS principles, should only grow in importance.
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A APPENDIX: DETAILS

This section describes how we computeTnext F ree (freeTime)
as discussed in§4.1-4.2. For the noop scheduler (§4.1), we
model the disk queue Q as a list of outstanding IOs {ABCD...}.
Thus, the Q’s wait time (qTime) is the total seek cost of every
consecutive IO pairs in the queue, which will be added to
freeTime:

qTime += (seekCost(A,B) + seekCost(B,C) + ...);

freeTime += qTime;

We then model the seekCost from IO X to Y as follows:

seekCost(X,Y) =
seekCostPerGB * (Y.offsetInGB - X.offsetInGB) +
transferCostPerKB * X.sizeInKB;

The transferCostPerKB is currently simplified as a constant
parameter. The seekCostPerGB parameter is more challeng-
ing to set due to the complexity of disk geometry. To profile
a target disk, we measure the latency (seek cost) of all pairs
of random IOs per GB distance. For example, for a 1000 GB
disk, we fill a matrix seekCostPerGB[X][Y], where X and Y

range from 1 to 1000, a total of 1 million items in the matrix.
We profile the disk with 10 tries and use linear regression for
more accuracy.

The next challenge is to model the queueing policy. For
noop (FIFO) scheduler, the order of IOs do not change. How-
ever, as the IOs are submitted to the disk, the disk has its
own disk queue and will reorder the IOs. Existing works al-
ready describe how to characterize disk policies [48, 49]. For
example, we found that our target disk exhibits SSTF pol-
icy. Thus, to make freeTime more accurate, qTime should be
modeled into an SSTF ordering (sstfTime), for example if
the disk head position (known from the last IO completed) is
currently near D, then the freeTime should be:

sstfTime += (seekCost(D,C) + seekCost(C,B) + ...);

freeTime += sstfTime;

For CFQ, the modeling is more complex as there are two-
level of queues: the CFQ queues (based on priority and fair-
ness) and the disk queue (SSTF). Thus, we predict two queue-
ing wait times cfqTime and sstfTime. Predicting cfqTime is
explained in Section 4.2.
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