
The Case for Drill-Ready Cloud Computing

Tanakorn Leesatapornwongsa and Haryadi S. Gunawi

University of Chicago

1 Introduction

“The best way to avoid failure is to fail constantly.

Learn with real scale, not toy models.”

– Netflix engineers [40]

As cloud computing has matured, more and more lo-

cal applications are replaced by easy-to-use on-demand ser-

vices accessible via computer networks (a.k.a. cloud ser-

vices). Running behind these services are massive hardware

infrastructures and complex management tasks (e.g., recov-

ery, software upgrades) that if not tested thoroughly can ex-

hibit failures that lead to major service disruptions. Some re-

searchers estimate that 568 hours of downtime at 13 well-

known cloud services since 2007 had an economic impact of

more than $70 million [18]. Others predict worse: for every

hour it is not up and running, a cloud service can take a hit be-

tween $1 to 5 million [32]. Moreover, an outage of a popular

service can shutdown other dependent services [11, 37, 59],

leading to many more frustrated and furious users.

The situation is not getting better due to the bleak future

of offline testing. The success of online web services has

boosted the “ship early, ship often” trend [46] where features

are deployed quickly with little beta testing. Developers do

not have the luxury of time to test a system against many

failure scenarios. Therefore, in offline testing, the scale of

the workloads, environments, and injected failures are often

orders of magnitude smaller than the scale of real deploy-

ments. Nonetheless, service providers often believe that the

recovery will work correctly in many failure scenarios. In re-

ality, past service outages prove that such expectations are

often not met.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

SoCC ’14, 3-5 Nov. 2014, Seattle, Washington, USA
ACM 978-1-4503-3252-1.

http://dx.doi.org/10.1145/2670979.2670992

In this paper, we raise this fundamental question: how

can we ensure that cloud services work robustly against

many failure scenarios in real deployments? The Netflix’s

quote above sums up a new method to improve dependabil-

ity. As many failure scenarios cannot be covered in offline

testing, failures should be deliberately injected online in ac-

tual deployments. We name this method “failure drill”. The

principle here is to make failure a first-class citizen: rather

than waiting for unplanned failures to happen, cloud services

should plan and schedule failure drills from time to time

(analogous to a routine exercise of fire drills), thereby un-

earthing in-production recovery issues early before they lead

to major outages.

Despite these benefits, failure drill unfortunately remains

a “controversial” idea, mainly because no service provider

would like to report to their clients “a failure drill that we

scheduled has caused an outage/data loss/performance dis-

ruption.” The risk is too high. For example, 60% of compa-

nies that lose customer data or cannot resume operations in

10 days are likely to go out of business [14]. As a result,

this method is only accepted “psychologically”, but not prac-

tically. That is, many believe it is important but few really

make it a common practice.

Our vision is to make failure drills prevalent (i.e., a routine

practice in deployments of thousands of cloud systems). To

the best of our knowledge, no existing literature has laid out

efforts and solutions in this space. Until this happens, cloud

providers cannot reap the power of failure drills. To address

this pressing issue, we propose drill-ready cloud computing,

a new reliability paradigm that enables cloud systems to per-

form failure drills in an easy, safe and efficient manners (anal-

ogous to a proper fire drill preparation).

To illustrate this, imagine a usage scenario where an ad-

ministrator would verify if the system can survive 25% of

machine failures. Given a drill-ready system, the administra-

tor can write a simple drill specification. The system then can

prepare itself for the drill (e.g., spawn into normal and drill

modes) and “virtually” kill the machines in the drill mode

to trigger actual recovery, automatically monitor the recov-

ery process, carefully ensure isolation (to prevent data loss

and performance disruption), and finish the drill if recovery

works fine or cancel the drill and restore the normal state if

a new recovery anomaly is found. All of the hurdles of ex-

ercising failure drills are now built into a drill-ready system

and removed from the responsibility of the administrator.

1

Appears in the Proceedings of the 5th ACM Symposium on Cloud Computing (SoCC ’14)

Service Outage Root Event → “Supposedly Tolerable” Failure → Incorrect Recovery → Major Outage

EBS [51] Network misconfiguration → Huge nodes partitioning → Re-mirroring storm → many clusters collapsed

Gmail [53] Upgrade event → Some servers offline → Bad request routing → All routing servers went down

App Eng. [54] Power failure → 25% machines of a DC offline → Bad failover → All user apps in degraded states

Skype [56] System overload → 30% supernodes failed → Positive feedback loop → Almost all supernodes failed
Google Drive [55] bug in network control → Some network offline → Timeouts during failover → 33% requests affected for 3 hours

Outlook [58] Caching service failures → Failover to backend servers → Request flooding at backend → 7-hour service outage

Pertino [41] Network failure → Network partition → Bad migration → 6-hour service disruption

Joyent [57] Operator error→ Whole DC reboots → PXE request flooding in whole-DC boot → Boot takes 1-hour or more

Yahoo Mail [36] Hardware failue → Some servers offline → Buggy failover to back-up systems → 1% of users affected for days

Table 1: Major outages of popular cloud services than lasted for hours to days.

In subsequent sections, we present an extended motivation

(§2) and our proposed building blocks of drill-ready clouds:

safety, efficiency, usability, and generality (§3). We note that

the purpose of this paper is not to propose a specific solution,

but simply to present a new dependability paradigm for cloud

computing and the challenges that come with it.

2 Extended Motivation

In this section, we raise a basic question: what is missing

in cloud dependability research? To answer this, we jour-

ney through the history of dependability research in the last

decade, as summarized in Figure 1.

2.1 Fault-Tolerant Systems

As failures are commonplace, fault-tolerance becomes a ne-

cessity, not an option. Almost all deployed cloud systems are

equipped with complex fault-tolerant protocols that handle a

variety of failures.

Limitations: Complex failure recovery protocols are un-

fortunately hard to implement correctly, especially in low-

level system languages like C/C++ and Java. Performance

optimization code also often downgrades the robustness of

theoretically-proven protocols. As a result, recovery code is

susceptible to bugs [16, 21, 23, 31].

2.2 Offline Testing

Undoubtedly, recovery code must be thoroughly tested be-

fore deployed, which is the goal of offline testing. Many var-

ious forms of offline recovery testing have been proposed,

ranging from fault injections, model checking, stress testing,

static analysis, failure modeling, and running “mini clusters”

to emulate production scenarios.

Limitations: Although offline testing provides a certain

guarantee of recovery correctness, the scale of the injected

failures, workloads, and environments (e.g., #machines) are

often orders of magnitude smaller than the scale of real de-

ployments. For example, with hundreds of millions of users

worldwide, Skype only emulates thousands of users [56].

Similarly, Facebook uses a 100-machine cluster that mim-

ics the workload of 3000-machine production clusters [20].

Furthermore, only few companies deploy mini clusters for

testing purposes, while most others forego such luxury.

2.3 Service Outages

• Lessons from outage headlines: Even with offline test-

ing, recovery does not always work as expected and could

lead to service outages. We illustrate this problem by listing

some high-profile outages in Table 1; they exhibit a certain

pattern: some root events led to “supposedly tolerable” fail-

ures (in italic); however, the broken recovery (in bold) gave

rise to major outages. For example, A fraction of Gmail’s

servers were taken offline for a routine upgrade (which re-

portedly “should be fine”), but due to some recent changes on

the re-routing code, several servers refused to serve the extra

load causing a ripple of overloaded servers and resulting in

a global outage [53]. Similarly, Skype faced some overload

that caused 30% of the supernodes to go down. The rest of

the supernodes were not able to handle the extra responsi-

bility, creating a “positive feedback loop” that led to a near

complete outage [56]. More recently, a bug in a network con-

trol caused a portion of Google’s network capacity to go of-

fline, triggering re-routing and load recovery to other servers

which then caused unexpected increase in latency that trig-

gered a second bug that caused errors and timeouts on 33%

of the user requests [55]. Microsoft ActiveSync service went

down for 7 hours because of failures on their caching service

which then swamped the slower backend servers with high

request load [58]. Overall, the reality is clear: outages due to

large-scale recovery issues still plague many cloud services

regularly [1, 42], and they are still an unsolved problem.

• Lessons from Cloud Bug Study: Recently, we conduct an

in-depth and large-scale study of cloud development and de-

ployment issues from the bug repositories of six open-source

cloud systems [22]. From this study, we also found numerous

bugs that are hard to find in offline testing. Below are just a

few samples.

2

Appears in the Proceedings of the 5th ACM Symposium on Cloud Computing (SoCC ’14)

 Fault-Tolerant
 Systems

 + Drill
 Ready

Offline
Testing

Online
Testing

Outages

Diagnosis
Hidden
Outages

4

5

6

2 31

Figure 1: Dependability research.

Failure Drills

Sa
fe

ty

E
ffi

ci
en

cy

U
sa

b
ili

ty

Drill-Ready

G
en

er
al

it
y

Figure 2: Drill Ready.

[1-10]

6 5

4

32

1

6 5

4

32

1

[11-20] [21-30]

[31-40]

[41-50][51-60]

[1-15]

[16-30] [31-45]

[46-60]

(a) normal (b) drill

Figure 3: Normal vs. drill topology.

First, at scale, a large number of components can simulta-

neously fail. For example, a bad recovery in Hadoop took

more than 7 hours to recover 16,000 failed mappers. In

a ZooKeeper case, 1000 clients were simultaneously dis-

connected, leading to a close-request stampede that bogged

down other important requests. In an HDFS case, jobs writ-

ing to 100,000 files got killed causing lease recovery stam-

pede that crippled the cluster.

Second, there exists cases of positive feedback loop where

recovery inadvertently introduces more load and hence more

failures. For example, in Cassandra, heavy gossip traffic at

scale caused live nodes declared dead incorrectly; adding

more nodes to replace the “dead” nodes caused more gos-

sip traffic. In ZooKeeper, snapshot synchronization on very

large data set triggered a timeout which led to another syn-

chronization; as this continues on infinitely, incomplete snap-

shots accumulated on disks and the cluster ran out of disk

space.

Finally, we also see problems with simultaneous whole-

cluster reboot causing high reboot traffic, long global lock

contention, and distributed deadlock. In summary, all the

bugs above were found in deployment. We believe it is hard,

if not impossible, for offline testing to cover such large fail-

ures, loads, and data sets.

2.4 Diagnosis

As service outages and disruptions continued to occur, the

last decade witnessed growing research in diagnosis [10, 17,

35, 44, 47], which assists users, developers and administra-

tors to pinpoint and reproduce root causes of outages or dis-

ruptions.

Limitations: Although valuable, diagnosis is limited in two

ways. First, diagnosis detects symptoms that lead to disrup-

tions but does not necessary prevent the disruptions. Prevent-

ing disruptions is still the responsibility of the fault-tolerant

protocols built in the system. Second, diagnosis is a pas-

sive entity. It waits for disruption symptoms to appear af-

ter which it can begin diagnosing. In the literature, diagnosis

techniques are mostly evaluated based on issues that already

happened in the past.

2.5 Online Testing and Drills

Due to all the limitations above, there is a revamp of on-

line testing where tests are run directly on production sys-

tems. Two factors make this idea attractive: users outnumber

testers and in-production systems enter deep scenarios not

reachable in offline testing. Many instances of online testing

have been proposed [12, 49, 60], but they do not exercise fail-

ures. Failure drill is an instance of online testing, and large

web services realize its importance; large service providers

have learned from experience the importance of “failing of-

ten” [40].

Limitations: At the current state, failure drill remains con-

troversial due to its risky nature (no guarantee of safety, effi-

ciency, etc.). Let’s consider Netflix’s Chaos Monkey tool [9]

which can automatically kill virtual machines in a probabilis-

tic manner. The catch is that it requires engineers to “be alert

and able to respond” [9]. What if the engineers respond too

late (e.g., some data is already lost) and cannot revert back

to the normal pre-drill state? In a related story, at a major

venue, there was a “load spike drill” where cloud services

were challenged with load spikes and failures [5, 45]. How-

ever, not many providers participated because of the fear that

they would fail, and indeed, one company that participated

had to manually abort the drill [20].

In summary, failure drill is only common within a few

large organizations with the engineering resources, opera-

tional expertise, and managerial discipline to execute it [20].

In fact, to the best of our knowledge, we know only a hand-

ful companies that perform this in practice (e.g., Amazon,

Google, Microsoft, Netflix), and none of them describe their

strategies in detail; we suspect they have many skilled oper-

ators on stand by. Our goal is clear: failure drill should be a

common practice, ideally in every cloud service deployment.

2.6 A Missing Piece

In the context of failure drill, unfortunately the journey

through cloud dependability research seems to end at the last

step above. We are not aware of any published work that at-

tempts to address the risks, opportunities, and fundamental

challenges of exercising failure drills. We therefore advocate

the continuation of this journey into a new territory: drill-

ready cloud computing, an era where failure drills become a

3

Appears in the Proceedings of the 5th ACM Symposium on Cloud Computing (SoCC ’14)

regular, non-risky, non-disruptive, easy-to-do, and automated

operation.

3 Drill-Ready Clouds

To realize this new paradigm, we identify the four fundamen-

tal building blocks of drill-ready clouds: safety, efficiency,

usability and generality, as illustrated in Figure 2. We now

describe each of the building blocks along with our proposed

solutions.

3.1 Safety

Analogous to a proper fire drill preparation, a drill-ready sys-

tem should guarantee safety. The challenge is how to learn

about failure implications without suffering through them. A

drill would like to check if customer data could be lost with-

out really losing it, or if SLOs could be violated without vio-

lating them for a long period of time. Also, if a drill goes bad,

the system must automatically cancel the drill and quickly

restore to the healthy state. This safety challenge gets harder

due to the possibility of real failures occurring during a drill.

Guaranteeing safety is arguably the most fundamental task.

Below we propose our safety solutions.

• Drill State Isolation: To exercise a drill safely, a system

must be drill-aware. This can be accomplished by support-

ing two modes (normal and drill modes) and isolating the

normal state management from the drill one. Let’s consider

a key-value cluster that contains a simple ring of six nodes

with key space [1-60] as shown in Figure 3a (264 key space in

practice). In this architecture, every node monitors the avail-

ability of all nodes (as shown by the edges). If a drill virtually

removes nodes 5 and 6, the system will maintain two topolo-

gies: normal and drill topologies. In the drill topology, the

key-range responsibility for each node will be re-balanced as

shown in Figure 3b, and thus key operations (get and put)

will be routed differently in these two modes.

The separation of normal and drill states provides sev-

eral benefits. First, we can easily select which users/requests

(e.g., “gold” vs. “bronze” users) would be rerouted to the

drill topology. Second, resource accounting between the two

modes can be done easily; the system can ensure resource

requirements (e.g., disk or network bandwidth) of the nor-

mal mode is not jeopardized. Finally, upon drill cancellation,

the system can quickly fall back to the normal state. Any re-

quests affected by the drill will be migrated back to the nor-

mal state in an efficient way (more in Section 3.2). This tech-

nique is different from the expensive use of cloning where

normal state is copied to other “test nodes” [13, 29, 60]. In

our case, there are no test nodes and both modes know the

existence of each other.

• Self Cancellation: As we target distributed systems, there

will be a drill master (the “commando”) that sends drill com-

mands to other nodes (the agents). In this context, safety re-

quires the anticipation of real failures during the drill. For

example, a master or a network failure could partition the

commando from the agents. Such a situation could unsafely

place the agents in “limbo” for an indefinite period of time.

Therefore, self drill cancellation must be installed on every

node. An agent can autonomously revert back to the normal

mode if it cannot reach the commando or if a drill becomes

harmful.

• Safe Drill Specifications: For better usability, drills should

be written in some form of declarative specifications (more

in §3.3). A drill specification defines what failures to inject,

how long the drill should take, on what conditions the drill

should be cancelled, and some other drill properties. Before

a drill specification is executed, its safety must be verified, es-

pecially because specifications are written by human admin-

istrators. Imagine an administrator who forgets to write can-

cellation conditions; a harmful drill can run in a prolonged

period. Or, consider a specification that virtually kills a node

that stores the last surviving replica of some data (while the

background re-replication is still ongoing); here, the data will

“not exist” in the drill mode. Another motivating story comes

from Facebook where the engineers are highly careful in

turning up the scale of failure drills slowly and steadily (even

in their mini test clusters) [20]. Here, the safety precaution

is only done manually. With a clear specification language,

safety checks can be automated via some formal analysis tool

built on top. A simple example is a check that always requires

a cancellation condition to exist (more in §3.3).

•Delete/Overwrite Prevention: To prevent data loss, a drill-

ready system must carefully monitor data deletion, over-

writes/merging, and metadata changes (altered metadata can

make data inaccessible, and hence “lost”). Runtime guards

can be added to prevent accidental deletion/merging in drill

mode. Just-in-time metadata versioning can also be added to

prevent accidental changes to data pointers. Here, versioning

is only performed on metadata and is only run during a drill,

which is far more efficient than all-time full data versioning.

• SLA Protection: Imagine a scenario where some user re-

quests (under drill) are served longer than the 95-percentile

latency. To prevent such SLA violation, SLA protection must

be added. If the SLA is not met in drill mode, the requests can

be forwarded to the normal mode, and this event recorded in

error logs. This way the system administrator captures the

impact of the drill without affecting the real users.

4

Appears in the Proceedings of the 5th ACM Symposium on Cloud Computing (SoCC ’14)

3.2 Efficiency

Exercising drills could lead to extra data migration, which

then consume extra resources such as network bandwidth

and storage space. As we target data-intensive systems,

efficiency-oblivious drills will incur lots of performance

overhead. Moreover, in the world of utility computing, mone-

tary overhead must be accounted (extra compute cycles, I/Os,

and storage space will be charged). We believe there is a large

design space of drill optimization techniques.

• Domain-Specific Workload Sampling: Cloning real

workloads could consume double resources. A viable solu-

tion is to sample some requests to participate in a drill, for

example based on some domain-specific workload classifi-

cation (e.g., sample free customers but not the paying ones).

Sampling reduces drill resource consumption but it does not

reflect real failure scenarios where all requests are affected.

To emulate this, a drill can generate extra artificial workload

using load spike mechanisms (as long as SLA is not broken).

• Low-Overhead Drill Setup and Cleanup: Starting and

finishing a drill incurs setup and cleanup costs. To illustrate

this, let’s quantify the setup cost of the drill in Figure 3b

where two nodes are removed. The drill setup leads to key

migration (e.g., key range [11-15] must be moved from node

2 to node 1). This setup cost however might be unnecessary

as it depends on the objective of the drill. For example, this

particular drill can be used for two different objectives: (1)

to measure the impact of background key migration or (2) to

measure the performance of future requests when the cluster

is downsized by two nodes. In the second case, a full key mi-

gration is unnecessary and uneconomical (e.g., imagine key

11 is migrated to node 1 but is never used by future requests

during the drill).

Now let’s consider the cleanup cost. The drill topology in

Figure 3b will vanish as the drill ends, and any update re-

quests affected by the drill topology must now be moved to

its normal location (e.g., update on key 11 that was rerouted

to node 1 during the drill must now move to node 2). Imag-

ine thousands of affected keys that must be migrated back.

Here, the cleanup procedure can suddenly generate a harm-

ful bursty load that could negatively affect normal workload

or could prolong the cancellation phase of a bad drill.

We believe a key to optimization is the knowledge of drill

objectives. For example, for the second objective above, key

migration can be done lazily on demand (e.g., a key is mi-

grated when it is requested in the drill mode). Therefore,

drill objectives must be specified as part of the drill specifica-

tion. Furthermore, to ensure non-disruptive cleanup, the sys-

tem can decouple metadata and data migration where meta-

data (small size) is migrated directly for consistency and

data (large size) is migrated lazily on demand. For exam-

ple, given an updated key 11, we will put a data pointer

key11→node1 in node 2 such that the value of key 11 can be

fetched correctly when get(11) is requested in the future; in

other words, cleanup can be piggybacked with real requests.

• Cheap Drill Specifications: To further reduce drill cost,

one can write “smarter and cheaper” drill specifications. For

example, if a recovery (e.g., file re-mirroring) seems to be go-

ing well half-way in the process or user service-level agree-

ments are not violated, the drill can stop and report success.

• Monetary Cost Reduction via Simulation: Exercising

drills in the world of utility computing (e.g., Amazon EC2)

will incur monetary overhead. Let’s assume a machine costs

$0.25/hour and storage space $0.03/GB/month [2]. A drill

that shuts down 100 stateless front-end servers for 3 hours

would only cost roughly $75 (as recovery simply spawns

another 100 machines). A drill that kills 100 2-TB storage

servers would re-mirror 200 TB of data which would cost

$6000 if not done carefully (and if daily/weekly rent is not al-

lowed). Thus, whenever appropriate, the system can mix sim-

ulation and live experimentation. For example, to cut storage

cost, some file writes could be simulated (e.g., re-mirrored

data caused by a drill does not require on-disk space), and

similarly for network. Accurately simulating the network of

hundreds of machines is a difficult problem. Fortunately, net-

work data transfer is cheap; it is free within a DC and only

costs $0.02/GB across DCs [2]. Storage is expensive, but for-

tunately easier to simulate due to its localized nature.

3.3 Usability

To be highly usable, a drill-ready system should allow an ad-

ministrator to express some form of drill specification. Below

we describe approaches to improve drill usability.

• Declarative Drill Specification Language: An adminis-

trator might want to run a drill that starts during a peak load,

virtually disconnects 5% of the machines, stops when SLA is

broken in the last 1 minute or cancels halfway with success if

recovery progresses well after 10 minutes. Furthermore, the

same administrator might desire to run another set of drills

with larger failures (e.g., 10%, 20%) at different load (e.g.,

morning, noon). To simplify usability, these drills should be

written in a form of executable specifications.

Based on our past experience, one ideal solution is to

use a declarative logic language with runtime support. For

example, we have used a Datalog-based framework to ex-

press recovery specifications [21]. Others have illustrated

additional benefits of the language framework, such as the

ability to run distributed systems [7], the ease of adding

verification checks [50, 61], and the extensibility of adding

new constructs and runtime supports [34, 62]. In the context

of drills, the specification language should define important

drill-specific constructs such as the condition upon which the

5

Appears in the Proceedings of the 5th ACM Symposium on Cloud Computing (SoCC ’14)

drill should start and stop, the failed resources including the

quantity, and the affected requests, all of which will be exe-

cuted by the language runtime in a continuous fashion. Un-

like a simple start-up script, drill specifications are always

re-evaluated as new feeds come (e.g., new recovery progress

that comes from the live monitoring tool).

• Drill Coverage Metrics and Crowdsourcing: Ideally, an

administrator should run unique drills from time to time in

order to cover different failure scenarios. To improve usabil-

ity, there is a need to define drill coverage metrics. Unlike

traditional metrics such as code path/branch coverage, new

evaluation metrics are required, metrics such as failure scale

(e.g., kill 1% or 10% of the machines) and request load (e.g.,

during day or night). When a high-profile outage happens,

other service providers typically ask the question “Can my

system survive the same failure scenario?”. We believe drill

coverage metrics will provide a means to measure the fault

tolerance of deployed systems.

To improve usability further, drill crowdsourcing will be

an invaluable and effective approach. If two organizations

run the same system with the same configuration, they do

not need to run the same drill twice, but in fact they can run

different drills and improve coverage. To support this, each

type of system (e.g., Hadoop, HBase, Cassandra) should have

a community database containing coverage metrics such as

system version number, #deployment nodes, rack topology,

specific system configuration (e.g., consistent, vs, random

hashing), failure size, peak load, and the outcomes of the

drill. A third-party service can be used to protect the privacy

of deployment metrics. With this information, an organiza-

tion can exercise new unique drills (e.g., change failure size

to 20% while retaining the other attributes). We believe drill

crowdsourcing is unique compared to other crowdsourcing

contexts [6, 25, 26].

3.4 Generality

Cloud services periodically must run operational tasks such

as software upgrades and configuration changes. These oper-

ational codes are rarely run and are “fragile”, and thus could

lead to outages. Therefore, the paradigm of drill-ready com-

puting can be made general beyond failure drills, specifically

by including operational drills such as elasticity, configura-

tion, upgrade, and perhaps security attack drills. Below are

several operational drills that can be built with similar foun-

dations we discussed in previous sections; these drills below

have similarity with failure drills.

• Elasticity Drill: Many distributed systems are designed to

be elastic [30, 38, 48]; a cluster can scale up the number of

nodes on the fly based on load demand. This however in-

volves complex background operations such as load rebal-

ancing, data reassignments, and many other tasks that can fail

in the middle of the process [22]. In many systems, admin-

istrators are expected to perform these operations manually

and correctly via command lines [3, 4]. Fortunately, elastic-

ity drills are similar to failure drills; while the former is about

scaling out resources, the latter is about reducing resources.

• Configuration Change Drill: Configuration change is a

major root cause of service disruptions [22, 24, 51, 52]. In

our view, configuration changes are similar to background

operations described above; it modifies system states and

is hard to undo. Therefore, we believe similar mechanisms

can be applied here. Recent work proposes post-mortem

troubleshooting techniques to pinpoint misconfiguration root

causes [43, 8]. On the contrary, config change drills attempt

to prevent real consequences of possible misconfigurations.

• Software Upgrade Drill: To prevent a complete outage,

current practice advocates for rolling upgrades where updates

are applied to a subset of nodes at a time [15, 39]. If an up-

grade fails, it must be rolled back. However, it is hard to guar-

antee that a rollback is possible (e.g., an upgrade that leads

to a deadlock). We believe the idea of software upgrade drills

will improve the current practice for upgrades.

• Security Attack Drill: Many recent work have improved

the resiliency of software infrastructure against security at-

tacks [19, 28, 27, 33]. We believe it is interesting to test how

security defenses work under failures in production; this way

we can unearth security vulnerabilities under failures.

4 Conclusion

A decade ago, the concept of failure drill perhaps was con-

sidered outrageous. Today, failure is the norm; all pieces of

hardware can fail. It is part of “the cloud’s daily life”. There-

fore, failure drill is an accepted concept, but unfortunately

only “psychologically”, not practically. Our hope is to make

it pervasive in practice: every cloud service will routinely ex-

ercise failure drills in a safe, efficient, and easy manner. To

reach this, we continue the journey of cloud reliability re-

search towards the paradigm of drill-ready clouds.

We have accomplished some initial work on drill master

and client architecture and drill state isolation. The details

are unfortunately beyond the scope of this vision paper where

our primary goal is to deliver this new concept of drill-ready

clouds and the many system challenges that come with it.

5 Acknowledgments

We thank Sriram Rao, our shepherd, and the anonymous re-

viewers for their tremendous feedback and comments. This

material is based upon work supported by the NSF (grant

Nos. CCF-1321958, CCF-1336580, and CNS-1350499).

6

Appears in the Proceedings of the 5th ACM Symposium on Cloud Computing (SoCC ’14)

References

[1] http://cloutage.org.

[2] Amazon Web Services. http://aws.amazon.com.

[3] Apache HBase Operational Management. http://hbase.

apache.org/book/ops_mgt.html.

[4] Cassandra Operations. http://wiki.apache.org/

cassandra/Operations.

[5] DevOps GameDay. https://github.com/

cloudworkshop/devopsgameday/wiki.

[6] Open Sourced Vulnerability Database. http://www.osvdb.

org.

[7] Peter Alvaro, Tyson Condie, Neil Conway, Khaled

Elmeleegy, Joseph M. Hellerstein, and Russell C. Sears.

BOOM Analytics: Exploring Data-Centric, Declarative

Programming for the Cloud. In EuroSys ’10.

[8] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray:

Automating Root-Cause Diagnosis of Performance

Anomalies in Production Software. In OSDI ’12.

[9] Cory Bennett and Ariel Tseitlin. Chaos Monkey Released

Into The Wild. http://techblog.netflix.com, 2012.

[10] Sapan Bhatia, Abhishek Kumar, Marc E. Fiuczynski, and

Larry Peterson. Lightweight, High-Resolution Monitoring

for Troubleshooting Production Systems. In OSDI ’08.

[11] Henry Blodget. Amazon’s Cloud Crash Disaster Permanently

Destroyed Many Customers’ Data. http://www.

businessinsider.com, 2011.

[12] Andrew Bosworth. Building and testing at Facebook.

http://www.facebook.com/Engineering, 2012.

[13] Marco Canini, Vojin Jovanović, Daniele Venzano, Boris

Spasojević, Olivier Crameri, and Dejan Kostić. Toward

Online Testing of Federated and Heterogeneous Distributed

Systems. In USENIX ATC ’11.

[14] Boston Computing. Data Loss Statistics. http://www.

bostoncomputing.net.

[15] Olivier Crameri, Nikola Knezevic, Dejan Kostic, Ricardo

Bianchini, and Willy Zwaenepoel. Staged Deployment in

Mirage, an Integrated Software Upgrade Testing and

Distribution System. In SOSP ’07.

[16] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:

Understanding the Impact of Limpware on Scale-Out Cloud

Systems. In SoCC ’13.

[17] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu. Fay:

Extensible Distributed Tracing from Kernels to Clusters. In

SOSP ’11.

[18] Loek Essers. Cloud Failures Cost More Than $70 Million

Since 2007, Researchers Estimate. http://www.pcworld.

com, 2012.

[19] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei,

David Mazieres, John C. Mitchell, and Alejandro Russo.

Hails: Protecting Data Privacy in Untrusted Web

Applications. In OSDI ’12.

[20] Haryadi S. Gunawi, Thanh Do, Joseph M. Hellerstein, Ion

Stoica, Dhruba Borthakur, and Jesse Robbins. Failure as a

Service (FaaS): A Cloud Service for Large-Scale, Online

Failure Drills. UC Berkeley Technical Report

UCB/EECS-2011-87.

[21] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro,

Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, Koushik Sen, and Dhruba Borthakur. FATE

and DESTINI: A Framework for Cloud Recovery Testing. In

NSDI ’11.

[22] Haryadi S. Gunawi, Mingzhe. Hao, Tanakorn

Leesatapornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry

Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.

Lukman, Vincentius Martin, and Anang Satria. What Bugs

Live in the Cloud? A Study of 3000+ Issues in Cloud

Systems. In SoCC ’14.

[23] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang,

Pu Zhang, Yingwei Luo, Tom Bergan, Madan Musuvathi,

Zheng Zhang, and Lidong Zhou. Failure Recovery: When the

Cure Is Worse Than the Disease. In HotOS XIV, 2013.

[24] Weihang Jiang, Chongfeng Hu, Shankar Pasupathy, Arkady

Kanevsky, Zhenmin Li, and Yuanyuan Zhou. Understanding

Customer Problem Troubleshooting from Storage System

Logs. In FAST ’09.

[25] Baris Kasikci, Cristian Zamfir, and George Candea.

RaceMob: Crowdsourced Data Race Detection. In SOSP ’13.

[26] Emre Kiciman and Benjamin Livshits. Ajaxscope: A

platform for remotely monitoring the client-side behavior of

web 2.0 applications. In SOSP ’07.

[27] Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich

CSAIL. Efficient Patch-based Auditing for Web Application

Vulnerabilities. In OSDI ’12.

[28] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans

Kaashoek. Intrusion Recovery Using Selective Re-execution.

In OSDI ’10.

[29] Oren Laadan, Nicolas Viennot, Chia che Tsai, Chris Blinn,

Junfeng Yang, and Jason Nieh. Pervasive Detection of

Process Races in Deployed Systems. In SOSP ’11.

[30] H. Andres Lagar-Cavilla, Joseph A. Whitney, Adin Scannell,

Stephen M. Rumble, Philip Patchin, Eyal de Lara, Michael

Brudno, and M. Satyanarayanan. SnowFlock: Rapid Virtual

Machine Cloning for Cloud Computing. In EuroSys ’09.

[31] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi,

Jeffrey F. Lukman, and Haryadi S. Gunawi. SAMC:

Semantic-Aware Model Checking for Fast Discovery of Deep

Bugs in Cloud Systems. In OSDI ’14.

[32] David Linthicum. Calculating the true cost of cloud outages.

http://www.infoworld.com, 2013.

[33] Lionel Litty, H. Andres Lagar-Cavilla, and David Lie.

Computer Meteorology: Monitoring Compute Clouds. In

HotOS XII, 2009.

[34] Changbin Liu, Boon Thau Loo, and Yun Mao. Declarative

Automated Cloud Resource Orchestration. In SoCC ’11.

7

http://cloutage.org
http://aws.amazon.com
http://hbase.apache.org/book/ops_mgt.html
http://hbase.apache.org/book/ops_mgt.html
http://wiki.apache.org/cassandra/Operations
http://wiki.apache.org/cassandra/Operations
https://github.com/cloudworkshop/devopsgameday/wiki
https://github.com/cloudworkshop/devopsgameday/wiki
http://www.osvdb.org
http://www.osvdb.org
http://techblog.netflix.com
http://www.businessinsider.com
http://www.businessinsider.com
http://www.facebook.com/Engineering
http://www.bostoncomputing.net
http://www.bostoncomputing.net
http://www.pcworld.com
http://www.pcworld.com
http://www.infoworld.com

Appears in the Proceedings of the 5th ACM Symposium on Cloud Computing (SoCC ’14)

[35] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen

Lian, Jian Tang, Ming Wu, M. Frans Kaashoek, and Zheng

Zhang. D3S: Debugging Deployed Distributed Systems. In

NSDI ’08.

[36] Marissa Mayer. An Update on Yahoo Mail, December 2013.

[37] Rich Miller. Amazon Cloud Outage KOs Reddit, Foursquare

and Others. http://www.datacenterknowledge.com,

2012.

[38] Michael J. Mior and Eyal de Lara. FlurryDB: A Dynamically

Scalable Relational Database with Virtual Machine Cloning.

In SYSTOR ’11.

[39] Iulian Neamtiu and Tudor Dumitras. Cloud Software

Upgrades: Challenges and Opportunities. In MESOCA ’11.

[40] Netflix. 5 Lessons We’ve Learned Using AWS. http://

techblog.netflix.com, December 2010.

[41] Pertino. April 1st Service Disruption Postmortem, April

2013.

[42] Ken Presti. 6 Devastating Cloud Outages Over The Last 6

Months. http://www.crn.com, 2013.

[43] Ariel Rabkin and Randy Katz. Precomputing Possible

Configuration Error Diagnoses. In ASE ’11.

[44] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul,

Mehul A. Shah, Charles Killian, and Amin Vahdat. Pip:

Detecting the unexpected in distributed systems. In NSDI ’06.

[45] Jesse Robbins, Kripa Krishnan, John Allspaw, and Tom

Limoncelli. Resilience Engineering: Learning to Embrace

Failure. ACM Queue, 10(9), September 2012.

[46] Chuck Rossi. Ship early and ship twice as often. https://

www.facebook.com/Engineering, 2012.

[47] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie

Krevat, Spencer Whitman, Michael Stroucken, William

Wang, Lianghong Xu, and Gregory R. Ganger. Diagnosing

Performance Changes by Comparing Request Flows. In

NSDI ’11.

[48] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John

Wilkes. CloudScale: Elastic Resource Scaling for

Multi-Tenant Cloud Systems. In SoCC ’11.

[49] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido

Appenzeller, Martin Casado, Nick McKeown, and Guru

Parulkar. Can the Production Network Be the Testbed? . In

OSDI ’10.

[50] Atul Singh, Petros Maniatis, Timothy Roscoe, and Peter

Druschel. Using Queries for Distributed Monitoring and

Forensics. In EuroSys ’06.

[51] AWS Team. Summary of the Amazon EC2 and Amazon

RDS Service Disruption in the US East Region. http://

aws.amazon.com/message/65648, 2011.

[52] AWS Team. Summary of the December 24, 2012 Amazon

ELB Service Event in the US-East Region. http://aws.

amazon.com/message/680587, 2012.

[53] Gmail Team. More on today’s Gmail issue. http://

gmailblog.blogspot.com, September 2009.

[54] Google AppEngine Team. Post-mortem for February 24th,

2010 outage. https://groups.google.com/group/

google-appengine, February 2010.

[55] Google Apps Team. GoogleApps IncidentReport, March

2013.

[56] Skype Team. CIO update: Post-mortem on the Skype outage

(December 2010). http://blogs.skype.com, December

2010.

[57] The Joyent Team. Postmortem for outage of us-east-1, May

2014.

[58] The Verge. Microsoft apologizes for Outlook, ActiveSync

downtime, says error overloaded servers, August 2013.

[59] Christina Warren. How Facebook killed the Internet.

http://www.cnn.com, 2013.

[60] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and

Viktor Kuncak. CrystalBall: Predicting and Preventing

Inconsistencies in Deployed. Distributed Systems. In NSDI

’09.

[61] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas

Haeberlen, Boon Thau Loo, and Micah Sherr. Secure

Network Provenance. In SOSP ’11.

[62] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li,

Boon Thau Loo, , and Yun Mao. Efficient Querying and

Maintenance of Network Provenance at Internet-Scale. In

SIGMOD ’10.

8

http://www.datacenterknowledge.com
http://techblog.netflix.com
http://techblog.netflix.com
http://www.crn.com
https://www.facebook.com/Engineering
https://www.facebook.com/Engineering
http://aws.amazon.com/message/65648
http://aws.amazon.com/message/65648
http://aws.amazon.com/message/680587
http://aws.amazon.com/message/680587
http://gmailblog.blogspot.com
http://gmailblog.blogspot.com
https://groups.google.com/group/google-appengine
https://groups.google.com/group/google-appengine
http://blogs.skype.com
http://www.cnn.com

