
Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

Limplock: Understanding the Impact of Limpware

on Scale-Out Cloud Systems

Thanh Do†, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi

University of Chicago † University of Wisconsin-Madison

Abstract

We highlight one often-overlooked cause of perfor-

mance failure: limpware – “limping” hardware whose

performance degrades significantly compared to its

specification. We report anecdotes of degraded disks and

network components seen in large-scale production. To

measure the system-level impact of limpware, we assem-

bled limpbench, a set of benchmarks that combine data-

intensive load and limpware injections. We benchmark

five cloud systems (Hadoop, HDFS, ZooKeeper, Cassan-

dra, and HBase) and find that limpware can severely im-

pact distributed operations, nodes, and an entire cluster.

From this, we introduce the concept of limplock, a situ-

ation where a system progresses slowly due to the pres-

ence of limpware and is not capable of failing over to

healthy components. We show how each cloud system

that we analyze can exhibit operation, node, and cluster

limplock. We conclude that many cloud systems are not

limpware tolerant.

1 Introduction

The success of cloud computing can be summarized

with three supporting trends: the incredible growth of

hardware performance and capacity (“big pipes”), the

continuous success of software architects in building

scalable distributed systems on thousands of big pipes,

and the “Big Data” collected and analyzed at massive

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copy-

rights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Permis-

sions@acm.org.

SOCC’13, October 01 - 03 2013, Santa Clara, CA, USA.

Copyright 2013 ACM 978-1-4503-2428-1/13/10$15.00.

http://dx.doi.org/10.1145/2523616.2523627

scale in a broad range of application areas. These suc-

cess trends nevertheless bring a growing challenge: to

ensure big data continuously flows in big pipes, cloud

systems must deal with all kinds of failures, includ-

ing hardware failures, software bugs, administrator mis-

takes, and many others. All of these lead to performance

failures, which is considered a big “nuisance” in large-

scale system management. Recent work has addressed

many sources of performance failures such as hetero-

geneous systems [30, 52], unbalanced resource alloca-

tion [29, 42, 47], software bugs [33], configuration mis-

takes [15] and straggling tasks [13, 22].

In this paper, we highlight one often-overlooked

cause of performance failures: limpware – “limping”

hardware1 whose performance degrades significantly

compared to its specification. The growing complexity

of technology scaling, manufacturing, design logic, us-

age, and operating environment increases the occurrence

of limpware. We believe this trend will continue, and

the concept of performance perfect hardware no longer

holds. We have collected reports that show how disk and

network performance can drop by orders of magnitude.

From these reports, we also find that unmanaged

limpware can lead to cascades of performance failures

across system components. For example, “there was a

case of a 1-Gbps NIC card on a machine that suddenly

was transmitting only at 1 Kbps, which then caused a

chain reaction upstream in such a way that the perfor-

mance of the entire workload of a 100-node cluster was

crawling at a snail’s pace, effectively making the sys-

tem unavailable for all practical purposes” [8]. We name

this condition as limplock2, a situation where a system

progresses extremely slow due to limpware and is not

capable of failing over to healthy components (i.e., the

system enters and cannot exit from limping mode).

These stories led us to raise the following questions:

1In automotive industry, the term “limp mode” is commonly used

to describe a situation where vehicle computer receives sensor signals

outside its programmed specifications. The same term is often used

for software systems that exhibit performance faults [34]. We adopt
the same term in the context of degraded hardware.

2Analogous to gridlock.

1

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

Are today’s cloud systems susceptible to limplock?

What are the system-level impacts of limpware on cloud

systems, and how to quantify them? Why limpware in a

machine can significantly degrade other nodes or even

the entire cluster? Why does this happen in current sys-

tem designs?

To address these questions, we assembled limp-

bench, a set of benchmarks that combine data-intensive

load and limpware injections (e.g., a degraded NIC or

disk). We benchmark five popular and varied scale-out

systems (Hadoop, HDFS, ZooKeeper, Cassandra, and

HBase). With this, we unearth distributed protocols and

system designs that are susceptible to limplock. We

also show how limplock can cascade in these systems,

for example, how a single slow NIC can make many

map/reduce tasks enter limplock and eventually make

a whole Hadoop cluster in limplock.

The limpbench results show that limpware can crip-

ple not only the operations running on it, but also other

healthy nodes, or even worse, a whole cluster. To clas-

sify such cascading failures, we introduce the concepts

of operation, node, and cluster limplock. Operation

limplock is the smallest measure of limplock where only

the operations that involve limpware are experiencing

slowdowns. Node limplock is a more severe condition

where operations that must be served by a limplocked

node will be affected although the operations do not in-

volve limpware. Finally, cluster limplock is the most se-

vere situation where limpware makes the performance

of an entire cluster collapse.

We present how these three classes of limplock can

occur in our target systems. We also pinpoint system de-

signs that allow limplock to occur. For example, we find

issues such as coarse-grained timeouts, single point of

performance failure, resource exhaustion due to multi-

purpose threads/queues, memoryless/revokeless retries,

and backlogs in unbounded queues.

In conclusion, our findings show that although to-

day’s cloud systems utilize redundant resources, they are

not capable of making limpware to “fail in place”. Per-

formance failures cascade, productivity is reduced, re-

sources are underutilized, and energy is wasted. There-

fore, we advocate that limpware should be considered

as a “new” and important failure mode that future cloud

systems should manage.

In the next section, we report again limpware occur-

rences that we have collected in our previous work [24].

Then, we present the new contributions of this paper:

• We present the concept of limplock and its three

subclasses: operation, node and cluster limplock,

along with system designs that allow them to hap-

pen (Section 3).

• We describe limpbench for Hadoop, HDFS,

ZooKeeper, Cassandra, and HBase (Section 4). In

total, we have run 56 experiments that benchmark

22 protocols with limpware, for a total of almost 8

hours under normal scenarios and 207 hours under

limpware scenarios.

• We present in detail our findings (Section 5). For

each system, we present the impacts of limpware

on the system and the design deficiencies. Overall,

we find 15 protocols that can exhibit limplock.

2 Cases of Limpware

To the best of our knowledge, there is no public large-

scale data on limpware occurrences. Nevertheless, we

have collected from practitioners many anecdotes of de-

graded disks and network components, along with the

root causes and negative impacts [24]. These stories

reaffirm the existence of limpware and the fact that hard-

ware performance failures are not hidden at the device

level but are exposed to applications. Below we present

again our previous findings to motivate subsequent sec-

tions. We focus on I/O-related limpware (disks and net-

work components) as they can slow down by orders of

magnitude. For degraded processors, the worst scenario

we found is only 26% slowdown [24].

Disks: Due to the complex mechanical nature of disk

drives, disk components wear out and exhibit a perfor-

mance failure. For example, a disk can have a weak

head which could reduce read/write bandwidth to the

affected platter by 80% or introduce more than 1 second

latency on every I/O [6]. Mechanical spinning disks are

not immune to vibration which can originate from bad

disk drive packaging, missing screws, constant “nag-

ging noise” of data centers, broken cooling fans, and

earthquakes, potentially decreasing disk bandwidth by

10-66% [26, 32]. The disk stack also includes complex

controller code that can contain firmware bugs that de-

grade performance over time [41]. Finally, as disks per-

form automatic bad sector remapping, a large number

of sector errors will impose more seek cost. We also

hear anecdotes from practitioners. For example, media

failures can force disks to re-read each block multiple

times before responding [9], and a set of disk volumes

incurred a wait time as high as 103 seconds, uncorrected

for 50 days, affecting the overall I/O performance [11].

We ourselves have experienced an impact of limpware;

Emulab encountered an erratic RAID controller on a

boss node that crippled the testbed1 [43].

1Needless to say, the failure cascaded to user level; we (i.e., the

students) were ineffective that day.

2

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

Network: A broken module/adapter can increase I/O

latency significantly. For example, a bad Fibre Chan-

nel passthrough module of a busy VM server can in-

crease user-perceived network latency by ten times [7].

A broken adapter can lose or corrupt packets, forcing the

firmware to perform error correcting which could slow

down all connected machines. As a prime example, In-

trepid Blue Gene/P administrators found a bad batch of

optical transceivers that experienced a high error rate,

collapsing throughput from 7 Gbps to just 2 Kbps; as

the failure was not isolated, the affected cluster ceased to

work [10]. A similar collapse was experienced at Face-

book, but due to a different cause: the engineers found a

network driver bug in Linux that degraded a NIC perfor-

mance from 1 Gbps to 1 Kbps [8]. Finally, power fluc-

tuations can also degrade switches and routers [25].

3 Limplock

To measure the system-level impacts of limpware, we

assembled limpbench (§4). From our findings of running

limpbench, we introduce a new of concept of limplock, a

situation where a system progresses slowly due to limp-

ware and is not capable of failing over to healthy com-

ponents (i.e., the system enters and cannot exit from

limping mode). We observe that limpware does not

just affect the operations running on it, but also other

healthy nodes, or even worse, a whole cluster. To clas-

sify such cascading failures, we introduce three levels

of limplock: operation, node, and cluster. Below, we

describe each limplock level. In each level, we dissect

system designs that allow limplock to occur and esca-

late, based on our analysis of our target systems. The

complete results will be presented in Section 5.

3.1 Operation Limplock

The smallest measure of limplock is operation limplock.

Let’s consider a 3-node write pipeline where one of the

nodes has a degraded NIC. In the absence of limpware

detection and failover recovery, the data transfer will

slow down and enter limplock. We uncover three sys-

tem designs that allow operation limplock:

Coarse-grained timeout: Timeout is a form of per-

formance failure detection, but a coarse-grained time-

out does not help. For example, in HDFS, we observe

that a large chunk of data is transferred in 64-KB pack-

ets, and a timeout is only thrown in the absence of a

packet response for 60 seconds. This implies that limp-

ware can limp to almost 1 KB/s without triggering a

failover (§5.2). This read/write limplock brings negative

implications to high-level software such as Hadoop and

HBase that run on HDFS (§5.1 and §5.5).

Single point of failure (SPOF): Limpware can be

failed over if there is another resource or data source

(i.e., the “No SPOF” principle). However, this principle

is not always upheld. For example, because of perfor-

mance reasons, Hadoop intermediate data is not repli-

cated. Here, we find that a mapper with a degraded NIC

can make all reducers of the job enter limplock, and sur-

prisingly, the speculative execution does not work in this

case (§5.1). Another example is SPOF due to indirection

(e.g., HBase on HDFS). To access a data region, a client

must go through the one HBase server that manages the

region (although the data is replicated in three nodes in

HDFS). If this “gateway” server has limpware, then it

becomes a performance SPOF (§5.5).

Memoryless/revokeless retry: A timeout is typically

followed by a retry, and ideally a retry should not in-

volve the same limpware. Yet, we find cases of pro-

longed limplock due to “memoryless” retry, a retry that

does not use any information from a previously failing

operation. We also find cases of revokeless retry. Here,

a retry does not revoke previous operations. Under re-

source exhaustion, the retry cannot proceed.

3.2 Node Limplock

A node limplock is a situation where operations that

must be served by this node experience a limplock, al-

though the operations do not involve limpware. As an il-

lustration, let’s consider a node with a degraded disk. In-

memory read operations served by this node should not

experience a limplock. But, if the node is in limplock,

the reads will also be affected. We also emphasize that

a node limplock can happen on other nodes that do not

contain limpware (i.e., a cascading effect). For exam-

ple, let’s consider a node A communicating with a node

B that has limpware. If all communicating threads in

A are in limplock due to B, then A exhibits a node

limplock, during which A cannot serve requests from/to

other nodes. A node limplock leads to resource underuti-

lization as the node cannot be used for other purposes.

We uncover two system designs that can cascade opera-

tion limplock to node limplock:

Bounded multi-purpose thread/queue: Developers of-

ten use a bounded pool of multi-purpose threads where

each thread can be used for different types of opera-

tion (e.g., read and write). Here, if limplocked opera-

tions occupy all the threads, then the resource is ex-

hausted, and the node enters limplock. For example, in

HDFS, limplocked writes to a slow disk can occupy

all the request threads at the master node, and thus in-

memory reads are affected (§5.2). Similarly, a multi-

purpose queue is often used; a node uses one queue to

communicate to all other nodes, and hence a slow com-

munication between a pair of nodes can make the single

queue full, disabling communication with other nodes.

3

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

Unbounded thread/queue: Unbounded solutions can

also lead to node limplock due to backlogs. For exam-

ple, in the ZooKeeper quorum protocol, a slow follower

can make the leader’s in-memory queue grow as the fol-

lower cannot catch up with all the updates. Over time,

this backlog will exhaust the leader’s memory space and

lead to a node limplock (§5.3).

3.3 Cluster Limplock

Cluster limplock is the most severe level of limplock.

Here, a single limpware makes the whole cluster perfor-

mance collapse. This condition is different from node

limplock where only one or a subset of all the nodes

are affected. Distributed systems are prone to cluster

limplock as nodes communicate with each other via

which limplock cascades. There are two scenarios that

lead to cluster limplock.

All nodes in limplock: If all nodes in the system en-

ter limplock, then the cluster is technically in limplock.

This happens in protocols with a small maximum num-

ber of resources. For example, in Hadoop, by default a

node can have two map and reduce tasks. We find that

a wide fan-out (e.g., many reducers reading from a slow

mapper) can quickly cause cluster limplock (§5.1).

Master-slave architecture: This architecture is prone

to cluster limplock. If a master exhibits a node limplock,

then entire operations that are routed to the master will

enter limplock. In cloud systems where the slave-to-

master ratio is typically large (e.g., HDFS), a master

limplock can make many slave nodes underutilized.

4 Limpbench

We now present limpbench, a set of benchmarks that

we assembled for two purposes: to quantify limplock

in current cloud systems and to unearth system designs

leading to limplock. In total, we have run 56 experi-

ments to benchmark 22 protocols with limpware on five

scale-out systems (Hadoop/HDFS-1.0.4, ZooKeeper-

3.4.5, Cassandra-1.2.3, and HBase-0.94.2). Due to space

constraints, we only report a subset of limpbench results

in Table 1; excluded experiments lead to the same con-

clusions. Each row in Table 1 represents an experiment.

In each experiment, we target a particular protocol, run

a microbenchmark, and inject a slow NIC/disk. We run

our experiments on the Emulab testbed [1]. Each experi-

ment is repeated 3-5 times. Figure 1 shows the empirical

results and will be described in Section 5. Limpbench is

available on our group website [5].

4.1 Methodology

Each experiment includes four important components:

data-intensive protocols, load stress, fault injections

(limpware and crash), and white-box metrics.

• Data-intensive protocols. We evaluate data-intensive

system protocols such as read, write, rebalancing, but

not background protocols like gossipers. In some exper-

iments, we mix protocols that require different resources

(e.g., read from cache, write to disk) to analyze cascades

of limplock. Our target protocols are listed in the “Pro-

tocol” column of Table 1.

• Load stress. We construct microbenchmarks that

stress request load (listed in the “Workload” column of

Table 1). Performance failures often happen under sys-

tem load. Each benchmark saturates 30-70% of the max-

imum throughput of the setup.

• Fault Injection. First, we perform limpware injec-

tion on a local network card (NIC) or disk. We focus

on I/Os as they can slow down by orders of magnitude.

The perfect network and disk throughputs are 100 Mbps

and 80 MB/s respectively. In each experiment, we in-

ject three limpware scenarios (slow down a NIC/disk by

10x, 100x, and 1000x). We only inject slow disk on ex-

periments that involve synchronous writes to disk. Many

protocols of our target systems only write data to buffer

cache, and hence the majority of the experiments involve

slow NIC. We also perform node-aware limpware injec-

tion; across different experiments, limpware is injected

on different types of node (e.g., master vs. datanode).

Second, we perform crash injection, mainly for two

purposes: to show the duration of crash failover recov-

ery (e.g., write failover, block regeneration) and to an-

alyze limpware impacts during fail-stop recovery (e.g.,

limpware impact on a data regeneration process). The

first purpose is to compare the speed of fail-stop recov-

ery with limpware recovery (if any).

• White-box metrics. We monitor system-specific in-

formation such as the number of working threads and

lengths of various request queues. We do not treat the

systems as black boxes because limpware impact might

be “hidden” behind external metrics such as response

times. White-box monitoring helps us unearth hidden

impacts and build better benchmarks. Monitoring re-

quires modifications to our target systems. However,

modifications are only needed for our detailed experi-

ments; limpbench can run on the vanilla versions.

5 Results

We now present the results of running limpbench on

Hadoop, HDFS, ZooKeeper, Cassandra, and HBase.

The columns OL, NL, and CL in Table 1 label which

experiments/protocols exhibit operation, node, and clus-

ter limplock respectively. We will not discuss individual

experiments but rather focus our discussion on how and

why these protocols exhibit limplock. Figure 1 quanti-

4

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

ID Protocol Limp- Injected Workload Base OL NL CL

ware Node Latency

F1 Logging Disk Master Create 8000 empty files 12
√ √ √

F2 Write Disk Data Create 30 64-MB files 182 . . .

F3 Read Disk Data Read 30 64-MB files 120 . . .

F4 Metadata Read/Logging Disk Master Stats 1000 files + heavy updates 9
√ √ √

F5 Checkpoint Disk Secondary Checkpoint 60K transactions 39
√

. .

F6 Write Net Data Create 30 64-MB files 208
√

. .

F7 Read Net Data Read 30 64-MB files 104
√

. .

F8 Regeneration Net Data Regenerate 90 blocks 432
√ √ √

F9 Regeneration Net Data-S/Data-D Scale replication factor from 2 to 4 11
√

. .

F10 Balancing Net Data-O/Data-U Move 3.47 GB of data 4105
√

. .

F11 Decommission Net Data-L/Data-R Decommission a node having 90 blocks 174
√ √ √

H1 Speculative execution Net Mapper WordCount: 512 MB dataset 80
√

. .

H2 Speculative execution Net Reducer WordCount: 512 MB dataset 80 . . .

H3 Speculative execution Net Job Tracker WordCount: 512 MB dataset 80 . . .

H4 Speculative execution Net Task Node 1000-task Facebook workload 4320
√ √ √

Z1 Get Net Leader Get 7000 1-KB znodes 4 . . .

Z2 Get Net Follower Get 7000 1-KB znodes 5 . . .

Z3 Set Net Leader Set 7000 1-KB znodes 23
√ √ √

Z4 Set Net Follower Set 7000 1-KB znodes 26 . . .

Z5 Set Net Follower Set 20KB data 6000 times to 100 znodes 64
√ √ √

C1 Put (quorum) Net Data Put 240K KeyValues 66 . . .

C2 Get (quorum) Net Data Get 45K KeyValues 73 . . .

C3 Get (one) + Put (all) Net Data Get 45K KeyValues + heavy puts 36 . . .

B1 Put Net Region Server Put 300K KeyValues 61
√

. .

B2 Get Net Region Server Get 300K KeyValues 151
√

. .

B3 Scan Net Region Server Scan 300K KeyValues 17
√

. .

B4 Cache Get/Put Net Data-H Get 100 KeyValues + heavy puts 4
√ √

.

B5 Compaction Net Region Server Compact 4 100-MB sstables 122
√ √

.

Table 1: Limpbench Experiments. Each table entry represents an experiment in limpbench. F, H, Z, C, and B in the “ID” column

represent HDFS, Hadoop, ZooKeeper, Cassandra, and HBase. The columns describe the experiment ID, the target protocol being

tested, the limpware type (disk/network), the node type where the limpware is injected, the workload, and the base latency of the

experiment under no limpware. A tick mark in OL, NL, and CL columns implies that the experiment leads to operation, node, and

cluster limplock respectively. Data: datanode; Data-H: datanode storing HLog; Data-S, Data-D, Data-O, Data-U, Data-L and

Data-R represent source, destination, over-utilized, under-utilized, leaving, and remaining datanodes, respectively. Due to space

constraints, the table only reports a subset of limpbench results.

fies the impact of limplock in each experiment. Uphill

bars (e.g., in F1, H1) imply the experiment observes a

limplock. Flat bars (e.g., in F2, H2) imply otherwise.

Up-and-down bars (e.g., in B1, Z5) imply that when

congestion is severe (e.g., 0.1 Mbps NIC), the connec-

tion to the affected node is “flapping” (connected and

disconnected continuously), and the cluster performs

better but not optimally. In the following sections, ma-

jor findings are written in italic text. Section 5.6 summa-

rizes our high-level findings and lessons learned.

5.1 Hadoop

In Hadoop, there is one job tracker which manages jobs

running on slave nodes. Each job is divided into a set

of map and reduce tasks. A mapper processes an input

chunk from HDFS and outputs a list of key-value pairs.

When all mappers have finished, each reducer fetches its

portion of the map outputs, runs a reduce function, and

writes the output to HDFS files. At the heart of Hadoop

is speculative execution, a protocol that monitors task

progress, detects stragglers, and runs backup tasks to

minimize job execution time.

We evaluate the robustness of the default Hadoop

speculation (LATE [52]) by injecting a degraded NIC on

three kinds of nodes: job tracker, map and reduce nodes

(to simplify diagnosis, we do not collocate mappers and

reducers).

Definition: In our discussion below, the

term “slow map/reduce node” implies a

map/reduce node that has a degraded NIC.

5.1.1 Limplock Free

We find that Hadoop speculation works as expected

when a reduce node is slow (Figure 1, H2). Here, the af-

fected reduce tasks are re-executed on other nodes. Slow

job tracker also does not affect job execution time as it

does not perform data-intensive tasks (H3).

5.1.2 Operation Limplock

We find three scenarios where Hadoop speculation is

not immune to slow network: when (1) a map node is

slow, (2) all reducers experience HDFS write limplock,

and (3) both original and backup mappers read from a

5

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

1
10

100
1000

E
xe

cu
tio

n
S

lo
w

do
w

n

No failure
Disk crash

8 MB/s
0.8 MB/s

0.08 MB/s
F1. Logging

(Master)
F2. Write

(Data)
F3. Read

(Data)
F4. Read/Logging

(Master)
F5. Checkpoint

(Secondary)

1
10

100
1000

E
xe

cu
tio

n
S

lo
w

do
w

n

No failure
Node crash

10 Mbps
1 Mbps

0.1 Mbps
F6. Write

(Data)
F7. Read

(Data)
F8. Regeneration

(Data)
F9. Regeneration
(Data-S/Data-D)

F10. Balancing
(Data-O/Data-U)

1
10

100
1000

E
xe

cu
tio

n
S

lo
w

do
w

n

F11. Decommission
(Data-L/Data-R)

H1. Spec. Exec.
(Mapper)

H2. Spec. Exec.
(Reducer)

H3. Spec. Exec.
(Job Tracker)

H4. Spec. Exec.
(Task Node)

Z1. Get
(Leader)

1
10

100
1000

E
xe

cu
tio

n
S

lo
w

do
w

n

Z2. Get
(Follower)

Z3. Set
(Leader)

Z4. Set
(Follower)

Z5. Set
(Follower)

C1. Put(quorum)
(Data)

C2. Get(quorum)
(Data)

1
10

100
1000

E
xe

cu
tio

n
S

lo
w

do
w

n

C3. Get(one) + Put(all)
(Data)

B1. Put
(Region Server)

B2. Get
(Region Server)

B3. Scan
(Region Server)

B4. Cache Get/Put
(Data-H)

B5. Compaction
(Region Server)

Figure 1: Limpbench Results. Each graph represents the result of each experiment (e.g., F1) described in Table 1. The y-axis

plots the slowdowns (in log scale) of an experiment under various limpware scenarios. In the first row, a slow disk is injected. In

the rest, a slow NIC is injected. The graphs show that cloud systems are crash tolerant, but not limpware tolerant.

remote slow node. These cases lead to job execution

slowdowns by orders of magnitude (e.g., H1). The root

causes of the problem are imprecise straggler detection

and intra-job speculation. We now discuss these three

limplock scenarios.

First, a slow map node can slow down all reducers

of the same job, and hence does not trigger speculation.

We find that a mapper can run on a slow node with-

out being marked as a straggler. This is because the in-

put/output of a mapper typically involves only the local

disk due to data locality; the slow NIC does not affect

the mapper. However, during the reduce phase, the im-

plication is severe: when all reducers of the same job

fetch the mapper’s output through the slow link, all of

the reducers progress at the same slow rate. Speculation

is not triggered because a reduce task is marked as a

straggler only if it makes little progress relative to oth-

ers of the same job.

Although it is the reducers that are affected, re-

executing the reducers is not the solution. We con-

structed a synthetic job where only a subset of the re-

ducers fetch data from a slow map node. The affected

reducers are re-executed, however, the backup reducers

still read from the same slow source again. The slow

map node is a single point of performance failure, and

the solution is to rerun the map task elsewhere.

Second, all reducers of a job can exhibit HDFS write

limplock, which does not trigger speculation; HDFS

write limplock is explained in §5.2. The essence is that

all reducers write their outputs at the same slow rate,

similar as the previous scenario. To illustrate these two

scenarios, Figure 2a plots the progress scores of three

reducers of a job. There are three significant regions:

all scores initially progress slowly due to a slow input,

then jump quickly in computation mode, and slow down

again due to HDFS write limplock. These 40-second

tasks finish after 1200 seconds due to limplock.

Finally, both original and backup mappers can be in

limplock when both read from a remote slow node via

HDFS. There are two underlying issues. First, to prevent

thrashing, Hadoop limits the number of backup task (de-

fault is one); if a backup task exhibits limplock, so is the

job. Second, although HDFS employs a 3-way replica-

tion, HDFS can pick the same slow node several times.

This is a case of memoryless retry. That is, Hadoop does

not inform HDFS that it wants a different source than

the previous slow one.

5.1.3 Node Limplock

A node limplock occurs when its task slots are all occu-

pied by limplocked tasks. A Hadoop node has a limited

number of map and reduce slots. If all slots are occupied

by limplocked map and reduce tasks, then the node will

6

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

P
ro

gr
es

s
S

co
re

Time (second)

(a) Limplocked Reducers

Normal reducer
Limplocked reducer 1
Limplocked reducer 2
Limplocked reducer 3

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

Li
m

pl
oc

ke
d

N
od

es
 (

%
)

Time (minute)

(b) Cascading Limplock

30-node cluster

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350

of

 J
ob

s
F

in
is

he
d

Time (minute)

(c) Job Throughput

Normal
w/ 1 limping node

Figure 2: Hadoop Limplock. The graphs show (a) the progress scores of limplocked reducers of a job in experiment H1 (a

normal reducer is shown for comparison), (b) cascades of node limplock due to single limpware, and (c) a throughput collapse of

a Hadoop cluster due to limpware. For Figures (b) and (c), we ran a Facebook workload [3] on a 30-node cluster.

be in limplock. The node is underutilized as it cannot

run other healthy jobs unaffected by the limpware.

5.1.4 Cluster Limplock

A single limpware can cripple an entire Hadoop clus-

ter. This happens when limpware causes limplocked

map/reduce tasks, which then lead to limplocked nodes

and eventually a limplocked cluster when all nodes are

in limplock. To illustrate this in real settings, we ran a

Facebook workload [3, 17] on a 30-node cluster with

a node that has a degraded NIC. Figure 2b shows how

limpware can cause many nodes to enter limplock over

time and eventually a cluster limplock. Figure 2c shows

how the cluster is underutilized. In a normal scenario,

the 30-node cluster finishes around 172 jobs/hour. How-

ever, under cluster limplock, the throughput collapses to

almost 1 job/hour at t = 250 minutes.

5.2 HDFS

HDFS employs a dedicated master and multiple datan-

odes. The master serves metadata reads and writes with

a fixed-size thread pool. All metadata is kept in mem-

ory for fast reads. A logging protocol writes metadata

updates to an on-disk log that is replicated on three stor-

age volumes. Datanodes serve data read and write re-

quests. A data file is stored in 64-MB blocks. A new

data block is written through a pipeline of three nodes

by default. Dead datanodes will lead to under-replicated

blocks, which then will trigger a block regeneration pro-

cess. To reduce noise to foreground tasks, each data-

node can only run two regeneration threads at a time

with a throttled bandwidth. Block regeneration is also

triggered when a datanode is decommissioned or users

increase file replication factor on the fly. HDFS also

provides a rebalancing process for balancing disk usage

across datanodes.

We evaluate the robustness of HDFS protocols by in-

jecting a degraded disk or NIC. To evaluate master pro-

tocols, we inject a degraded disk out of three available

disks, but not NIC because there is only a single master.

5.2.1 Limplock Free

Datanode-related protocols are in general immune to

slow disk. This is because data writes only flush up-

dates to the OS buffer cache; on-disk flush happens in

the background every 30 seconds. In our experiments,

with 512 MB RAM, the write rate must be above 17

MB/s to reveal any impact. The network however is lim-

ited to only 12.5 MB/s.

5.2.2 Operation Limplock

HDFS is built for fail-stop tolerance but not limpware

tolerance; we find numerous protocols that can exhibit

limplock due to a degraded disk or NIC, as shown in Ta-

ble 1. Below we frame our findings in terms of HDFS

design deficiencies that lead to limplock-prone proto-

cols: coarse-grained timeouts, memoryless and revoke-

less retries, and timeout-less protocols.

First, HDFS data read and write protocols employ a

coarse-grained timeout such that a NIC that limps above

1 KB/s will not trigger a failover (Figure 1, F7). Specif-

ically, these protocols transfer a large data block in 64-

KB packets, and a timeout is only thrown in the ab-

sence of a packet response for 60 seconds. HDFS might

expect that upper-level software employs a more fine-

grained domain-specific timeout, however, such is not

the case in Hadoop (§5.1) and HBase (§5.5). Timeouts

based on relative performance [14] might be more ap-

propriate than constant long timeouts.

Second, even in the presence of timeouts, multiple re-

tries can exhibit limplock due to memoryless retry, simi-

lar to the Hadoop case. Here, limpware is involved again

in recovery. Consider a file scale-up experiment from 2

to 4 replicas, and one of the source nodes is slow. Even

with random selection, HDFS can choose the same slow

source multiple times (F9).

Finally and surprisingly, some protocols are timeout-

less. For example, the log protocol at the master writes

to three storage volumes serially without any timeout.

One degraded disk will slow down all log updates (F1).

We believe this is because applications expect the OS to

7

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 20 40 60 80 100

P
ro

ba
bi

lit
y

Nodes

a) Read

r = 40
r = 20
r = 10
r = 5
r = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

5 20 40 60 80 100

Nodes

b) Write

r = 40
r = 20
r = 10
r = 5
r = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

5 20 40 60 80 100

Nodes

c) Block Regeneration

b = 3200
b = 1600

b = 800
b = 400

 0

 0.2

 0.4

 0.6

 0.8

 1

5 20 40 60 80 100

Nodes

d) Cluster Regeneration

b = 6400
b = 3200
b = 1600
b = 800
b = 400

Figure 3: HDFS Limplock Probabilities. The figures plot the probabilities of (a) read limplock/Prl , (b) write limplock/Pwl , (c)

block limplock/Pbl , (d) and cluster regeneration limplock/Pcl , as defined in Table 2. The x-axis plots cluster size.

Symbol Definition/Derivation

n # nodes

b # blocks per node / to regenerate

r # user requests

Prl 1− (n−1
n

)r

Pwl 1− (n−3
n

)r

Pnl 1− (n−3
n−2)

b
n−1 − b

(n−1)×(n−2)
× (n−3

n−2)
b−n+1

n−1

Pcl Pnl
n−2

pnl(i)
(

n−2
i

)

×Pnl
i × (1−Pnl)

n−2−i

pbl ∑
n−2
i=2 pnl(i)×

(i
2)

(n−1
2)

+ ∑
n−2
i=1 pnl(i)× i

(n−1
2)

Pbl 1− (1− pbl)
b

Table 2: HDFS Limplock Frequency. The table shows

the probabilities of a user experiences at least one read (Prl)

and write limplock (Pwl), a node is in regeneration limplock

(Pnl), a cluster is in regeneration limplock (Pcl), exactly i nodes

are in regeneration limplock (pnl(i)), a block is in regenera-

tion limplock (pbl), and at least one block is in regeneration

limplock (Pbl). Details can be found in [23].

return some error code if hardware fails, but such is not

the case for limpware.

To show how often operation limplock happens in

HDFS, we model HDFS basic protocols (read, write,

and regeneration), derive their limplock probabilities as

shown in Table 2, and use simulations to confirm our

results. The details are beyond the scope of this paper,

but can be found in our technical report [23]. Figure 3a

and 3b plot the probabilities of a user to experience at

least one read and write limplock respectively as a func-

tion of cluster size and request count. The probabilities

are relatively high for a small to medium cluster (e.g.,

30-node). This significantly affects HDFS users (e.g.,

Hadoop operation limplock described in §5.1).

5.2.3 Node Limplock

We find two protocols that can lead to node limplock:

regeneration and logging. The root cause is resource ex-

haustion by limplocked operations.

HDFS can exhibit a regeneration node limplock

where all the node’s regeneration threads are in

limplock. Regeneration is run by the master for under-

replicated blocks. For each block, the master chooses

a source that has a surviving replica and a destination

node. A source node can only run two regeneration

threads at a time. Thus, a regeneration node limplock

occurs if the source node has a slow NIC or when the

master picks a slow destination for both threads. Here,

the node’s regeneration resources are all exhausted.

A regeneration node limplock cannot be unwound

due to revokeless recovery. Interestingly, the master em-

ploys a timeout to “recover” a slow/failed regenera-

tion process, however, it is revokeless; the recovery

does not revoke the limplocked regeneration threads on

the affected datanodes (it only implicitly revokes if the

source/destination crashes). Therefore, as the master at-

tempts to retry, the resources are still exhausted, and the

retry fails silently.

A regeneration node limplock prolongs MTTR and po-

tentially decreases MTTDL. Nodes that exhibit regener-

ation limplock can be harmful because the nodes can-

not be used as sources for regenerating other under-

replicated blocks. This essentially prolongs the data re-

covery time (MTTR). In one experiment, a stable state

(zero under-replicated block) is reached after 37 hours,

309x slower than in a normal case (Figure 1, F8). If more

nodes die during this long recovery, some blocks can

be completely lost, essentially shortening the mean time

to data loss (MTTDL). To generalize this problem, we

introduce a new term, block limplock, which is a sce-

nario where at least an under-replicated block B cannot

be regenerated (possibly for a long time) because the

source nodes are in limplock. We derive the probability

of at least one block limplock (Pbl in Table 2) as a func-

tion of cluster size and number of blocks stored in every

datanode (which also represents the number of under-

replicated blocks). Figure 3c plots this probability. The

number is alarmingly high; even in a 100-node cluster, a

dead 200-GB node (3200 under-replicated blocks) will

lead to at least one block limplock.

Other than regeneration, we do not find any datanode

protocols that cause node limplock, mainly because a

datanode does not have a bounded thread pool for other

operations (e.g., it creates a new thread with small mem-

8

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

ory footprint for each data read/write). We however find

a node limplock case in the master logging protocol.

In master-slave architecture, master limplock essentially

leads to cluster limplock, which we describe next.

5.2.4 Cluster Limplock

The two HDFS protocols that can exhibit node limplock,

regeneration and logging, eventually lead to cluster

limplock.

First, An HDFS cluster can experience a total regen-

eration limplock where all regeneration threads are in

limplock. As defined before, if all nodes are in limplock

then the cluster is in limplock. In terms of regeneration,

all regeneration threads progress slowly and affect the

MTTR and MTTDL. Figure 3d plots the probability of

cluster regeneration limplock (Pcl in Table 2). A small

cluster (< 30 nodes) is prone to regeneration cluster

limplock, as also confirmed in our simulation [23].

Second, HDFS master is in limplock when all han-

dlers are exhausted by limplocked log writes. As dis-

cussed earlier, a slow disk at the master leads to

limplocked log updates (F1). This leads to resource ex-

haustion under a high load of updates. This is because

the master employs a fixed-size pool of multi-purpose

threads for handling metadata read/write requests (de-

fault is 10). Therefore, as limplocked log writes occupy

all the threads, incoming metadata read requests which

only need to read in-memory metadata (do not involve

the limpware) are blocked in a waiting queue. In one ex-

periment, in-memory read throughput collapses by 233x

(F4). Since the master is in node limplock, all operations

that require metadata reads/writes essentially experience

a cluster limplock.

5.3 ZooKeeper

ZooKeeper has a single leader and multiple follower

nodes, and uses znodes as data abstraction. ZooKeeper

basic APIs include create, set, get, delete, and sync. Zn-

ode get protocol is served by any node, but updates

must be forwarded to the leader who executes a quorum-

based atomic broadcast protocol to all the followers. If

quorum is reached, ZooKeeper returns success.

In our evaluation, we inject a degraded NIC on two

types of nodes: leader and follower. The client always

connects to a healthy follower.

5.3.1 Limplock Free

As the client connects to a healthy node, get protocol

is limplock free because the slow leader/follower is not

involved (Figure 1, Z1, Z2). Similarly, based on one ex-

periment (Z4), the quorum-based broadcast protocol is

also limplock free. Here, a slow follower who has not

yet committed updates does not affect the response time

as the majority of the nodes are healthy.

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

#R
eq

s
(x

10
00

)

Time (second)

ZooKeeper Throughput
 Normal

 10 Mbps
 1 Mbps

0.1 Mbps

Figure 4: ZooKeeper Cluster Limplock. The figure plots

the number of requests served over time under different limp-

ware scenarios.

5.3.2 Operation Limplock

If the leader is slow, all updates are in limplock (Z3).

Leader-follower architecture must ensure that the leader

is the most robust node. We notice that the slow leader

can be congested and its IPC timeout disconnects all

connections, which then triggers a leader election pro-

cess. However, as data connections were cut, congestion

diminishes, and the slow leader can join the election.

In fact, this previous slow leader is likely to be elected

again as the election favors a node that has the latest

epoch time and transaction ID; the only way a previous

leader loses is if it is unavailable during the election.

5.3.3 Cluster Limplock

We find two scenarios that lead to cluster limplock. First,

a slow leader causes a cluster limplock with respect to

update operations. As described above, this is because

all update operations involve the leader.

Second, the presence of a slow follower in a quorum-

based protocol can create a backlog at the leader which

can cause a cluster limplock. This is an interesting “hid-

den” backlog scenario. In our discussion above, in the

presence of a slow follower, the quorum-based proto-

col “looks” limplock free (Z4). However, our white-

box metrics hint an upcoming problem. Specifically, we

monitor each queue that the leader maintains for each

follower for forwarding updates, and we observe that

the request queue for the slow follower keeps growing (a

backlogged queue). In a short-running experiment (e.g.,

30 seconds in Z4), response time is not affected. How-

ever, in a larger and longer experiment, we start noticing

cluster degradation (Z5).

A slow follower can cripple an entire ZooKeeper clus-

ter. To illustrate this issue further, we plot the number

of updates served over time in Figure 4. In a normal

scenario, the throughput is constant at 90 requests/sec.

With a slow follower (0.1 Mbps NIC), after 100 seconds,

the cluster throughput collapses to 3 requests/sec. The

root cause is resource exhaustion; the backlogged queue

starts to exhaust the heap, and thus Java garbage col-

lection (GC) works hard all the time to find free space.

What happens next depends on the request and degrada-

tion rates. The leader can be in limplock for a long time

9

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

(dashed lines for 10 and 1 Mbps), or it can crash as it

runs out of memory after a certain time (▽ on bold line).

Even after a new leader is elected, the cluster throughput

is never back to normal, only 13 requests/sec (bold line

after ▽). This is because the slow follower is still part of

the ensemble, which means the new leader must send a

big snapshot of backlog to the slow follower that can fail

in the middle due to congestion and repeat continuously.

5.4 Cassandra

Cassandra is a distributed key-value store that partitions

data across a ring of nodes using consistent hashing. Key

gets/puts can be performed with consistency level one,

quorum, and all. The common replication factor for a

key is three. Given a key operation, a client directly con-

nects to one of the three replica nodes (i.e., the coordina-

tor). Depending on the consistency level, a coordinator

node may forward reads/writes to other replica nodes.

Each Cassandra node monitors all the nodes in the clus-

ter with dead/up labels. If a replica node is dead, a co-

ordinator stores the updates to its local disk as “hints”,

which will be forwarded later when the node comes

back up (i.e., eventual consistency).

In our experiments, the client connects to a healthy

coordinator, which then forwards requests to other

replica nodes where one of them has a degraded NIC. At

this point, we only analyze get and put protocols. Based

on our initial results, Cassandra’s architecture is in gen-

eral limplock free, and only exhibits 2x slowdown. We

are still in the process of crafting more benchmarks to

unearth any possible limplock cases.

5.4.1 Limplock Free

For weak consistency operations (“quorum” and “one”),

Cassandra’s architecture is limplock free (Figure 1, C1).

However, we observe that they are not completely un-

affected; when a replica node limps at 1 and 0.1 Mbps,

the client response time increases by almost 2x. We sus-

pect some backlog/memory exhaustion similar to the

ZooKeeper case, but our white-box monitoring finds

none. This is because a coordinator writes outstanding

requests as hints and discards them after no response for

10 seconds. We believe Cassandra employs this backlog

prevention due to an incident in the past where a back-

logged queue led to overflows in other nodes’ queues,

crippling nodes communication [4].

After further diagnosis, we find that the 2x slowdown

is due to “flapping”, a condition where peers see the

slow node dead and up continuously as the node’s gos-

sip messages are buried in congestion. Due to flapping,

the coordinator’s write stage continuously stores and

forwards hints. This flapping-induced background work

leads to extra work by Java GC, which is the cause of 2x

slowdown.

5.4.2 Operation Limplock

Gets and puts with full consistency are affected by a

slow replica. This is expected as a direct implication

of full consistency. However, in Cassandra, limplocked

operations do not affect limplock-free operations, and

thus Cassandra does not exhibit node limplock such

as in Hadoop (§5.1) and HDFS (§5.2). This robust-

ness comes from the staged event-driven architecture

(SEDA) [49] (i.e., there is no resource exhaustion due

to multi-purpose threads). Specifically, Cassandra de-

couples read and write stages. Therefore, limplocked

writes only exhaust the thread pool in the write stage,

and limplock-free reads are not affected (C3), and vice

versa. SEDA architecture proves to be robust in this par-

ticular case.

5.5 HBase

HBase is a distributed key-value store with a different

architecture than Cassandra. While Cassandra directly

manages data replication, HBase leverages HDFS for

managing replicas (another level of indirection). HBase

manages tables, partitioned into row ranges. Each row

range is called a region, which is the unit for distribution

and load balancing. HBase has two types of nodes: re-

gion servers, each serves one or more regions, and mas-

ter servers, which assign regions to region servers. This

mapping is stored in two special catalog tables, ROOT

and META.

We evaluate HBase by injecting a degraded NIC on

a region server. In addition, as HBase relies on HDFS,

we also reproduce HDFS read/write limplock (§5.2) and

analyze its impact on HBase.

5.5.1 Operation Limplock

HDFS read/write limplock directly affects HBase pro-

tocols. All HBase protocols that perform HDFS writes

(such as commit-log updates, table compaction, table

splitting) are directly affected (e.g., Figure 1, B4). The

impact of HDFS read limplock is only observed if the

data is not in HBase caches.

5.5.2 Node Limplock

An HBase region server can exhibit node limplock due

to resource exhaustion by limplocked HDFS writes. The

issues of fixed resource pool and multi-purpose threads

also occur in HBase. In particular, a region server ex-

hibits a node limplock when its threads are all occupied

by limplocked HDFS writes. As a result, incoming reads

that could be served from in-memory are affected, 620x

slower in one experiment (B4).

A slow region server is a performance SPOF. Indi-

rection (e.g., HBase on HDFS) simplifies system man-

agement, but could lead to a side effect, a performance

10

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

SPOF. That is, if a region server has a slow NIC, then

all accesses to the regions that it manages will be in

limplock (B1-3). Although a region is replicated three

times in HDFS, access to any of the replicas must go

through the region server. In contrast, Cassandra (with-

out indirection) allows clients to connect directly to any

replica. Regions will be migrated only if the managing

server is dead, but not if it is slow.

A slow region server can lead to compaction backlog

that requires manual handling. A periodic compaction

job reads “sstables” of a table from HDFS, merges them,

and writes a new sstable to HDFS (B5). A slow region

server is unable to compact many sstables on time (a

backlog). Even if the degraded NIC is replaced, the re-

gion server must perform major compactions of many

sstables, which might not fit in memory (OOM), leading

to a server outage. Compaction OOM is often reported

and requires manual handling by administrators [2].

5.5.3 Cluster Limplock

A slow region server that manages catalog tables can

introduce a cluster limplock. Although HBase is a de-

centralized system, a slow region server that manages

catalog regions (e.g., ROOT and META tables) can in-

troduce a cluster limplock, which will impact new re-

quests that have not cached catalog metadata.

5.6 Summary of Results

Impacts of limpware cascade. Operation limplock can

spread to node and eventually cluster limplock. Al-

most all cloud systems we analyze are susceptible to

limplock. Below we summarize our high-level findings

and the lessons learned.

• Hadoop: Speculative execution, the heart of Hadoop’s

tail-tolerant strategy, has three loopholes that can lead

to map/reduce operation limplock (§5.1). This com-

bined with bounded map/reduce slots cause resource ex-

haustion that leads to node and cluster limplock where

job throughput collapses by orders of magnitude. We

find three design deficiencies in Hadoop. First, intra-job

speculation has a flaw; if all tasks are slow due to limp-

ware, then there is “no” straggler. Second, there is an

imprecise accounting; a slow map node affects reducers’

progress scores. Finally, a backup task does not always

“cut the tail” as it can involve the same limpware (e.g.,

due to memoryless retry).

• HDFS: Many HDFS protocols can exhibit limplock.

Read/write limplock affects upper layers such as

Hadoop and HBase. Block regeneration limplock could

heavily degrade MTTR and MTTDL as recovery slows

down by orders of magnitude. Master-slave architec-

ture is highly prone to cluster limplock if the mas-

ter exhibits node limplock. We conclude several defi-

ciencies in HDFS system designs: coarse-grained time-

outs, multi-purpose threads (lead to resource exhaus-

tion), memoryless and revokeless retries, and timeout-

less protocols. All of these must be fixed as upper layers

expect performance reliability from HDFS.

• ZooKeeper: Our surprising finding here is that a

quorum-based protocol is not always immune to perfor-

mance failure. A slow follower can create a backlog of

updates at the leader, which can trigger heavy GC pro-

cess and eventually OOM. In this leader-follower archi-

tecture, a leader limplock becomes a cluster limplock.

• Cassandra: Limping failure does not heavily affect

Cassandra. Weak consistency operations (e.g., quorum)

are not heavily affected because of the relaxed eventual

consistency; long outstanding requests are converted as

local hints. However, Cassandra is not completely im-

mune to limpware; a slow node can lead to flapping

which can introduce 2x slowdown. We also find that the

SEDA architecture [49] in Cassandra can prevent node

limplock as stages are isolated. We are still in the pro-

cess of crafting more benchmarks to unearth any possi-

ble limplock cases.

• HBase: Operation, node, and cluster limplocks occur

in HBase similar to other systems. A new finding here

is an impact of indirection (HBase on HDFS). If a re-

gion server is in limplock, then all accesses to the re-

gions that it manages will be in limplock. Indirection

simplifies system management, but could lead to a per-

formance SPOF.

6 Discussion

It is evident that the results we presented demand an

era of limpware-tolerant cloud systems. Building such

systems is our future agenda. In this section, we dis-

cuss several strategies. We categorize the discussion into

three principles: limplock avoidance, detection and re-

covery. We do not claim that the solutions are final, in

fact, we focus on open challenges and opportunities of

implementing the solutions.

• Limplock avoidance: As today’s cloud systems are

built with fail-stop tolerance, one solution is to convert

limpware to a fail-stop failure. However, a single ma-

chine can have multiple resources (multiple disks, NICs,

and cores). Thus, crashing might not be a good option.

Another reason is that hardware is managed by device

drivers which can be buggy. Rebooting or fixing the

buggy driver is a more appropriate solution in this case.

Another related solution is to automatically quaran-

tine limpware to prevent cascading failures. The system

then checks if the limpware is transient or permanent.

A transient limpware can join the system again once it

11

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

is healthy. Quarantine however must be performed cau-

tiously; an earthquake or a long power glitch can make

many hardware pieces limp. Quarantining a large por-

tion of a cluster is not desirable.

Limplock avoidance can also be achieved with

limplock-free design patterns; every data structure

and algorithm should take into account cascades

of limplock. For example, developers can enforce

the use of differentiated queues/threads where ev-

ery queue/thread handles a different type of opera-

tion to prevent cascades of limplock (e.g., similar to

SEDA [49]). Developers can also explore destination-

proportional queues to ensure that messages directed to

a slow destination do not lead to resource exhaustion.

We believe many more limplock-free design patterns

can be explored.

“Scale can be your friend” [36]. This is also appli-

cable here. Limplock probability is likely to decrease

as scale increases. Unfortunately, this is not true if

limplock cascades (e.g., a Hadoop cluster limplock).

• Limplock detection. Detection must be accurate and

efficient. Accurate detection is fundamental for proper

recovery. Imagine a limpware-induced slowdown incor-

rectly detected as overload-induced. Here, a recovery

might react (incorrectly) by throttling or reducing the

workload as opposed to isolating the limpware. Thus,

an end-to-end detection is needed. Unfortunately, high-

level performance management does not always in-

corporate individual hardware performance. Hadoop’s

flaws is an example (§5.1). To reduce monitoring over-

head, there is a need to explore methods that unearth

implicit events from explicit events; fortunately im-

plicit limpware behaviors can be attributed to certain

explicit causes (e.g., #remappings, #error corrections).

Rather than having a full-blown monitoring, only ex-

plicit signals can be monitored. Beyond these strategies,

limplock detection can leverage a rich body of literature

in peer comparison [38], sampling [35], and root-cause

analysis [15, 33, 44].

• Limplock recovery. A good recovery is one that al-

lows limpware to “fail in place” (i.e., still slow but not

affecting other components). Within this principle, there

are many strategies to consider: How to utilize nodes

with degraded disks for in-memory computation only?

How to distribute computations across racks connected

by a degraded switch? How to differentiate recovery of

transient vs. permanent limpware? Also, unlike the fail-

stop principle where only two failure modes exist (fail

or working), limpware introduces more complex failure

modes; a hardware can slow down by just 1% or worse

50%. Different slowdowns might be handled differently;

limpware might still be usable in different ways depend-

ing on the domain.

In summary, we believe the design space of limpware-

tolerant cloud computing is vast. We will explore this

in our future work. We also hope this paper provides a

strong motivation for the cloud community to explore

this space further.

7 Related Work

In our previous work [24], we advocate the concept of

limpware-tolerant clouds based on our early findings;

we set up three simple micro-benchmarks with limp-

ware injections and found that limpware can make soft-

ware systems limping; there is little limpware detection

and recovery in these systems. In this paper, we present a

more complete limpbench that covers more systems and

delivers more results (56 experiments that cover 22 pro-

tocols). From in-depth findings, we formalize the prob-

lem with the concept of limplock and its taxonomy.

Recent work provides rich analysis of various hard-

ware failures including machine failures, disk failures,

memory corruption, and network failures [16, 27, 28,

39, 40, 45]. “Formal” studies of these failures were un-

dertaken after anecdotes started to circulate. We argue

that studies of limpware are needed.

Distributed jobs have to deal with performance vari-

ability originating from jitters and stragglers. Jitters are

often transient and sporadic in nature [54]. Limpware

on the other hand can be both transient and permanent

and exhibit as much as 1000x slowdown, and hence

should be treated differently. Stragglers are mostly de-

tected at the task level and mitigated by speculative

execution [22, 52], which can suffer from several pit-

falls (§5.1). Another tail-tolerant approach is cloning re-

quests [12, 21]. If designed carelessly, cloned requests

might involve the same limpware, exhibiting the same

pitfalls as in Hadoop. Cloning is also limited to small

jobs with little resource consumption.

Many solutions have been proposed to enforce per-

formance isolation and fairness at various levels (e.g.,

disk [46], CPU [53], VM [29], and cloud tenants [42])

and to manage performance variability using runtime

adaptation techniques [14, 30, 47]. In this paper, we ar-

gue an end-to-end approach is needed; high-level per-

formance management policies must incorporate indi-

vidual low-level hardware performance (§6).

Big data should flow in big pipes, but design

flaws could introduce bottlenecks which lead to “small

pipes” [31, 50], or in our case, limplock. To unearth de-

sign flaws, pinpoint implementation bugs, or diagnose

misconfiguration, many approaches analyze system-

specific information such as request flows [38], sys-

tems logs [51], and configuration snapshots [48]. We

12

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

similarly use white-box metrics for manual diagnosis

of limpware-intolerant designs. Other work leverages

black-box metrics for statistical performance diagnosis

(e.g., CPU usage) [18, 19, 34]. Here, code debugging is

a non goal, and deep design flaws are hard to find.

Current cloud benchmarks (e.g., YCSB [20],

YCSB++ [37]) typically evaluate performance trade-

offs among various cloud systems. Our work is

complementary; limpbench evaluates the performance

of cloud systems under limpware scenarios.

8 Conclusion

Limpware is a reality and a destructive failure mode.

Yet, cloud systems are not immune to limpware. This

leads to limplock at many levels (operation, node, and

cluster). Decades of research portray how new fail-

ure modes always dramatically transform systems de-

sign and implementation. Likewise, we hope this paper

provides a strong motivation and foundation that com-

mence the transformation of today’s cloud systems into

limpware-tolerant systems.

9 Acknowledgments

We thank George Porter, our shepherd, and the anony-

mous reviewers for their tremendous feedback and com-

ments. This material is based upon work supported by

the NSF (grant Nos. CCF-1321958, CCF-1336580, and

CCF-1017073). The experiments in this paper were per-

formed in the Utah Emulab network testbed [1].

References

[1] Emulab Testbed. http://www.emulab.net.

[2] HBase User Mailing List. http://tinyurl.com/kwdsrwx.

[3] SWIM: Statistical Workload Injector for MapReduce.

https://github.com/SWIMProjectUCB/SWIM/wiki.

[4] Tcp Manager only ever has one connection. http://tinyurl.

com/n2vy5qw.

[5] UCARE LigHTS project: Limpware Tolerant Systems.

http://ucare.cs.uchicago.edu/projects/lights.

[6] Weak Head. http://tinyurl.com/m26gx37.

[7] Message 1800544: High Latency. http://tinyurl.com/

bdwkqsp, 2011.

[8] Personal Comm. from Dhruba Borthakur of Facebook, 2011.

[9] Personal Comm. from Andrew Baptist of Cleversafe, 2013.

[10] Personal Comm. from Kevin Harms of ANL, 2013.

[11] Personal Comm. from Mike Kasick of CMU, 2013.

[12] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion
Stoica. Effective straggler mitigation: attack of the clones. In

Proceedings of the 10th Symposium on Networked Systems De-

sign and Implementation (NSDI), 2013.

[13] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Green-

berg, Ion Stoica, Yi Lu, Bikas Saha, and Edward Harris. Reining

in the Outliers in Map-Reduce Clusters using Mantri. In Pro-

ceedings of the 9th Symposium on Operating Systems Design

and Implementation (OSDI), 2010.

[14] Remzi H. Arpaci-Dusseau. Run-Time Adaptation in River.

ACM Transactions on Computer Systems (TOCS), 21(1):36–86,

February 2003.

[15] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Au-
tomating Root-Cause Diagnosis of Performance Anomalies in

Production Software. In Proceedings of the 10th Symposium on

Operating Systems Design and Implementation (OSDI), 2012.

[16] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pa-

supathy, and Jiri Schindler. An Analysis of Latent Sector Errors

in Disk Drives. In Proceedings of the 2007 ACM Conference

on Measurement and Modeling of Computer Systems (SIGMET-

RICS), 2007.

[17] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy H.

Katz. The Case for Evaluating MapReduce Performance Using

Workload Suites. In Proceedings of the IEEE International Sym-

posium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), 2011.

[18] Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie

Symons, and Evgenia Smirni. Anomaly? Application Change?

Or Workload Change? Towards Automated Detection of Appli-

cation Performance Anomaly and Change. In Proceedings of the

International Conference on Dependable Systems and Networks

(DSN), 2008.

[19] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons,

and Jeffrey S. Chase. Correlating instrumentation data to system

states: a building block for automated diagnosis and control. In

Proceedings of the 6th Symposium on Operating Systems Design

and Implementation (OSDI), 2004.

[20] Brian Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-

ishnan, and Russell Sears. Benchmarking Cloud Serving Sys-

tems with YCSB. In Proceedings of the 1st ACM Symposium on

Cloud Computing (SoCC), 2010.

[21] Jeffrey Dean and Luiz Andre Barroso. Tail at Scale. Communi-

cations of the ACM, 2013.

[22] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data

processing on large clusters. In Proceedings of the 6th Sympo-

sium on Operating Systems Design and Implementation (OSDI),

2004.

[23] Thanh Do and Haryadi S. Gunawi. Impact of Limpware on

HDFS: A Probabilistic Estimation. Technical Report TR-2013-

08, Department of Computer Science, University of Chicago,

2013.

[24] Thanh Do and Haryadi S. Gunawi. The Case for Limping-

Hardware Tolerant Clouds. In 5th USENIX Workshop on Hot

Topics in Cloud Computing (HotCloud), 2013.

[25] Erik Eckel. 10 tips for troubleshooting slowdowns in small busi-

ness networks. http://www.techrepublic.com, 2007.

[26] Michael Feldman. Startup Takes Aim at Performance-Killing

Vibration in Datacenter. http://www.hpcwire.com, 2010.

[27] Daniel Ford, Franis Labelle, Florentina I. Popovici, Murray

Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and

Sean Quinlna. Availability in Globally Distributed Storage Sys-

tems. In Proceedings of the 9th Symposium on Operating Sys-

tems Design and Implementation (OSDI), 2010.

[28] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Under-

standing network failures in data centers: measurement, analy-

sis, and implications. In Proceedings of SIGCOMM, 2011.

13

http://www.emulab.net
http://tinyurl.com/kwdsrwx
https://github.com/SWIMProjectUCB/SWIM/wiki
http://tinyurl.com/n2vy5qw
http://tinyurl.com/n2vy5qw
http://ucare.cs.uchicago.edu/projects/lights
http://tinyurl.com/m26gx37
http://tinyurl.com/bdwkqsp
http://tinyurl.com/bdwkqsp
http://www.techrepublic.com
http://www.hpcwire.com

Appears in the Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC ’13)

[29] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. PARDA:

Proportional Allocation of Resources for Distributed Storage

Access. In Proceedings of the 7th USENIX Symposium on File

and Storage Technologies (FAST), 2009.

[30] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl A.

Waldspurger, and Mustafa Uysal. Pesto: Online Storage Perfor-

mance Management in Virtualized Datacenters. In Proceedings

of the 2nd ACM Symposium on Cloud Computing (SoCC), 2011.

[31] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Rat-

nasamy. MegaPipe: A New Programming Interface for Scalable

Network I/O. In Proceedings of the 10th Symposium on Operat-

ing Systems Design and Implementation (OSDI), 2012.

[32] Robin Harris. Bad, bad, bad vibrations. http://tinyurl.

com/2c7ea6t, 2010.

[33] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and

Shan Lu. Understanding and Detecting Real-World Performance

Bugs. In Proceedings of the ACM SIGPLAN 2012 Conference

on Programming Language Design and Implementation (PLDI),

2012.

[34] Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya

Narasimhan. Black-Box Problem Diagnosis in Parallel File Sys-

tems. In Proceedings of the 8th USENIX Symposium on File and

Storage Technologies (FAST), 2010.

[35] Emre Kiciman and Benjamin Livshits. Ajaxscope: A platform

for remotely monitoring the client-side behavior of web 2.0 ap-

plications. In Proceedings of the 21st ACM Symposium on Op-

erating Systems Principles (SOSP), 2007.

[36] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John

Ousterhout, and Mendel Rosenblum. Fast Crash Recovery in

RAMCloud. In Proceedings of the 23rd ACM Symposium on

Operating Systems Principles (SOSP), 2011.

[37] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin

Xiao, Julio Lopez, Garth Gibson, Adam Fuchs, and Billie Ri-

naldi. YCSB++: Benchmarking and Performance Debugging

Advanced Features in Scalable Table Stores. In Proceedings of

the 2nd ACM Symposium on Cloud Computing (SoCC), 2011.

[38] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie

Krevat, Spencer Whitman, Michael Stroucken, William Wang,
Lianghong Xu, and Gregory R. Ganger. Diagnosing Perfor-

mance Changes by Comparing Request Flows. In Proceedings

of the 8th Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2011.

[39] Bianca Schroeder and Garth Gibson. Disk failures in the real

world: What does an MTTF of 1,000,000 hours mean to you? In

Proceedings of the 5th USENIX Symposium on File and Storage

Technologies (FAST), 2007.

[40] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber.

DRAM errors in the wild: A Large-Scale Field Study. In Pro-

ceedings of the 2009 ACM International Conference on Mea-

surement and Modeling of Computer Systems (SIGMETRICS),

2009.

[41] Anand Lal Shimpi. Intel Discovers Bug in 6-Series Chipset: Our

Analysis. http://tinyurl.com/45twb2l, 2011.

[42] David Shue, Michael J. Freedman, and Anees Shaikh. Perfor-

mance Isolation and Fairness for Multi-Tenant Cloud Storage.

In Proceedings of the 10th Symposium on Operating Systems

Design and Implementation (OSDI), 2012.

[43] Utah Emulab Testbed. Disk controller problems on boss.

http://www.emulab.net/news.php3, 2013.

[44] Avishay Traeger, Ivan Deras, and Erez Zadok. DARC: dynamic
analysis of root causes of latency distributions. In Proceedings

of the 2008 ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), 2008.

[45] Kashi Vishwanath and Nachi Nagappan. Characterizing Cloud

Computing Hardware Reliability. In Proceedings of the 1st ACM

Symposium on Cloud Computing (SoCC), 2010.

[46] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and

Gregory R. Ganger. Argon: performance insulation for shared

storage servers. In Proceedings of the 5th USENIX Symposium

on File and Storage Technologies (FAST), 2007.

[47] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy

Katz, and Ion Stoica. Cake: Enabling High-level SLOs on
Shared Storage Systems. In Proceedings of the 3rd ACM Sym-

posium on Cloud Computing (SoCC), 2012.

[48] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and

Yi min Wang. Automatic Misconfiguration Troubleshooting

with PeerPressure. In Proceedings of the 6th Symposium on Op-

erating Systems Design and Implementation (OSDI), 2004.

[49] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Ar-

chitecture for Well-Conditioned, Scalable Internet Services. In

Proceedings of the 18th ACM Symposium on Operating Systems

Principles (SOSP), 2001.

[50] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yongguang

Zhang. ICTCP: Incast Congestion Control for TCP. In The 6th

International Conference on emerging Networking EXperiments

and Technologies (CoNEXT), 2010.

[51] Wei Xu, Ling Huang, Armando Fox, David Patterson, and

Michael Jordan. Detecting Large-Scale System Problems by

Mining Console Logs. In Proceedings of the 22nd ACM Sym-

posium on Operating Systems Principles (SOSP), 2009.

[52] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy

Katz, and Ion Stoica. Improving MapReduce Performance in

Heterogeneous Environments. In Proceedings of the 8th Sympo-

sium on Operating Systems Design and Implementation (OSDI),

2008.

[53] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo

Gokhale, and John Wilkes. CPI2: CPU Performance Isolation
for Shared Compute Clusters. In Proceedings of the 2013 Eu-

roSys Conference (EuroSys), 2013.

[54] Tao Zou, Guozhang Wang, Marcos Vaz Salles, David Bindel,

Alan Demers, Johannes Gehrke, and Walker White. Making

Time-stepped Applications Tick in the Cloud. In Proceedings

of the 2nd ACM Symposium on Cloud Computing (SoCC), 2011.

14

http://tinyurl.com/2c7ea6t
http://tinyurl.com/2c7ea6t
http://tinyurl.com/45twb2l
http://www.emulab.net/news.php3

