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ABSTRACT

We present SAMC, an open-source model checker that can
be integrated to many modern distributed cloud systems.
SAMC can find concurrency bugs caused by non-deterministic
distributed events. We have successfully integrated SAMC

to Hadoop, ZooKeeper and Cassandra.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.2.4 [Software Engineering]: Software/Pro-
gram Verification—Model Checking

General Terms

Reliability, Verification

Keywords

Concurrency bugs, model checking, distributed systems

1. INTRODUCTION
The past eight years have seen a rise of distributed system

model checker (“dmck” in short) for verifying the reliability
of distributed systems [2, 3, 6, 8, 12, 13, 14, 15]. A dmck
is a software (implementation-level) model checker targeted
for distributed systems. It works by exercising all possible
sequences of events (e.g., different reorderings of messages),
and hereby pushing the target system into corner-case situ-
ations and unearthing hard-to-find bugs. To be highly prac-
tical in checking large-scale systems, a dmck must address
the state-space explosion problem, for example, by adopting
advanced state reduction techniques (dynamic partial order
reduction, symmetry, etc.) [6, 11, 15].

Behind this trend, in the past few years, there is a surge
of adoption of scalable distributed systems (“cloud systems”
in short) such as distributed parallel computing frameworks,
key-value stores, file systems, and synchronization services.
Some of the open-source cloud systems including Hadoop,
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HBase, Cassandra, HDFS, and ZooKeeper, have been adopted
massively. In our group, we have performed an in-depth
study of thousands of reported bugs in these systems and
we find that complex distributed concurrency bugs are quite
common and continue to appear throughout the develop-
ment process [5, 10, 11]. However, we did not find a single
available dmck that can be adopted to modern distributed
cloud systems. For example, Modist [15], an OS-interposed
dmck is proprietary and not open-sourced, and its imple-
mentation also has adoptability issues. MaceMC [8], a
popular dmck in the academic world, only works on sys-
tems built on Mace domain-specific language. (We elabo-
rate these issues later in Section 3). This situation forced us
to create a new adoptable dmck.

In this paper, we present Semantic-Aware Model Checker
(SAMC), an open-source dmck that can be adopted to many
modern distributed cloud systems [1]. We built SAMC

(pronounced “Sam-C”) from scratch for a total of over 10
KLOC. We built it in a completely different way than ex-
isting approaches (§3). We successfully integrated SAMC

to Hadoop, ZooKeeper and Cassandra. In our recent work,
we utilized SAMC to invent several semantic-aware explo-
ration algorithms [11]. In this demonstration paper, our fo-
cus is about the implementation and integrations details of
SAMC. In the following sections, we describe our design de-
cisions behind SAMC (§3) along with implementation and
integration details (§4).

2. DMCK PRIMER
We first describe the general anatomy of a dmck. As de-

fined above, dmck is a software model checker that checks
distributed systems directly at the implementation level.
That is, dmck re-orders distributed events as the system
runs. Figure 1 illustrates a dmck integration to a target
distributed system (e.g., a 2-node system). The dmck in-
serts an interposition layer (the gray box) in each node in
the target system with the purpose of controlling all non-
deterministic distributed events (e.g., asynchronous network
messages, timeouts). Thus, instead of letting the nodes ex-
ecute these events non-deterministically, the interposition
layer intercepts the events and let the dmck server decide
which events should be enabled and in what order (i.e., the
ordering permutation). For example, the figure shows that
there are four outstanding events (e.g., abcd) and the dmck
server decides to enable(b) first. In checking a real system,
a dmck typically generates thousands of executions; an ex-

ecution (or a path) is a specific ordering of events that the
dmck enables from an initial state to a termination point
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Figure 1: A Dmck Architecture.

(e.g., abcd, dbca). To permute events, the dmck server can
use different exploration algorithms from simple ones such
as depth first search and random to advanced ones such as
partial-order reduction and symmetry.

To model check a specific distributed protocol (e.g., leader
election), dmck starts the workload driver (not shown in the
figure) which runs a specific workload (e.g., node joins/de-
partures, file read/write), restarts the whole system after ev-
ery execution, and stops when the dmck server has exercised
all possible executions. As events are permuted, the target
system enters hard-to-reach states. Dmck continuously runs
safety checks on the global state (e.g., “there should be no
two leaders”) and local states via per-node assertions (e.g.,
“a read should return the latest version”).

In building a complete dmck, implementing the server side
is relatively straightforward; the server is a single centralized
process that communicates with all interposition instances.
The major challenges are: integrating the interposition layer
to a target system, intercepting the distributed events that
must be permuted, and enabling powerful exploration algo-
rithms at the dmck server.

3. DMCK FAMILY
In this section, we describe a family of dmck implementa-

tions proposed in the literature. To the best of our knowl-
edge, there are only three categories of dmck: OS-, application-
, and DSL-interposed dmck. We discuss the pros and cons
of each category using four characteristics: transparency,
adoptability, extensibility, and versatility (Table 1). These
metrics answer the following questions. Transparency: Can
the dmck test a new target system without any engineering
effort? Extensibility: How easy is it to incorporate new types
of events that can be permuted by the dmck? Versatility:

Can the dmck support the use of “rich”model checking tech-
niques (partial-order reduction, symmetry, semantic-based,
etc.)? Adoptability: Can the dmck be adopted to many other
distributed systems?

3.1 OS/Library-Interposed Dmck
There are several OS/library-interposed (lib-interposed)

dmcks that have been proposed. [2, 12, 15]. A lib-interposed
dmck intercepts distributed events at the system call or li-
brary level (e.g., network packet send and receive).

Pros: Transparency: The advantage of lib-interposed dmck
is in its transparency. Modist [15] for example is built
around Windows OS; distributed systems built on Windows
(that uses WinAPI specifically) can be transparently model
checked without much engineering effort. Due to its trans-
parency, lib-interposed dmck is capable of model checking
real-world distributed systems (e.g., the success of Modist

in checking many distributed systems inside Microsoft).
Cons: Adoptability: Lib-interposed dmck is constrained

to a particular OS/library and its APIs (e.g.,Modist cannot

Table 1: DMCK Comparision

Interposition level:
OS/Lib Application DSL

Transparent X ✗ X

Adoptable ✗ X ✗

Extensible ✗ X X

Versatile ✗ X X

help systems using C POSIX API or Java SDK libraries).
Extensibility: Because the interposition is restricted at the
system/library call level (for the sake of transparency), lib-
interposed dmck is hard to extend. Incorporating and per-
muting new application events (e.g., timeouts) is challeng-
ing as developers can implement timeout mechanisms in
many different ways. Modist must perform custom source
code analysis integrated with the system-call interposition-
ing. Extending this requires further changes at the OS level.
Versatility: Lib-interposed dmck cannot analyze event con-
tent because an event is merely a stream of bytes. For ex-
ample, the application-specific structures of messages are
lost. This impedes the use of advanced model-checking tech-
niques (e.g., partial-order reduction, symmetry) that require
“white-box” knowledge [11].

3.2 Application-Interposed Dmck
Application-interposed dmck interposes at application or

library-call functions. The tester first decides what events
to permute and then writes wrappers that intercept and for-
ward the events to the dmck server.

Pros: Adoptability: Application-level interposition auto-
matically implies adoptability. The only drawback is its
non-transparency. However, we emphasize that the non-
transparent part is only at the interpositioning side. The
permutation mechanisms and model-checking algorithms im-
plemented at the dmck server side can stay the same. We
discuss this more below. Extensibility: Application-level
interpositioning is extensible because the tester can easily
write wrappers for application routines (e.g., timeout mech-
anisms) and the dmck server will permute the new events.
Versatility: By interpositioning at application-specific func-
tions, the white-box information (e.g., message structures,
timeout values) is not lost. At the dmck server, the tester
can write powerful model checking algorithms that use white-
box knowledge [11]. We show later that white-box informa-
tion can be encapsulated as a set of key-value pairs (§4).

Cons: Transparency: The drawback of app-interposed
dmck is its non-transparency. The tester must decide what
functions to interpose, write wrappers around those func-
tions to notify the dmck server about the events.

Given the pros and cons above, we believe that application-
interposed dmck is the right approach for current and future
distributed systems. Specifically, we argue that transparency
is an unnecessary dmck feature. There are several reasons for
this. First, today’s developers tend to be the testers and vice
versa, especially for complex cloud distributed systems. We
believe it is easy for the developers (the experts of the target
system) to implement the interposition layer (wrappers) and
modify the original code slightly whenever necessary. Sec-
ond, this process can be done non-intrusively with mature
interpositioning technologies (e.g., AspectJ for Java). That
is, the target system code will not be cluttered with testing
code. Third, the non-transparency is only in the interposi-
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Table 2: SAMC Code Size.

Common SampleSys- ZooKeeper-
(re-usable) specific specific

Server 7519 17 86
Workload driver 274 30 206

Wrapper 31 18 217

tion side. To integrate an application-interposed dmck (e.g.,
in Java) to a new target system (e.g., in C), the tester can
simply write wrappers on the target system side (in C). How-
ever, the dmck server (where the permutation mechanisms
and model-checking algorithms live) can stay the same. The
interposition layer and the dmck server can communicate in
language-agnostic manner using a client-server network li-
brary. Fourth, although there is room for human error (e.g.,
important events are missed), this problem is fixable; we be-
lieve the tester can progressively ensure that all important
events are covered. In summary, advantages in adoptability,
extensibility, and versatility are much more powerful, and
sacrificing transparency can be justified.

Besides SAMC, we are aware of one other application-
interposed dmck, dBug [13], which targets C language and
requires manual insertion of interceptors (e.g., does not use
AspectC). Compared to dBug, SAMC has a richer inter-
face that empowers white-box techniques. SAMC also has
a replay tool.

3.3 DSL-Interposed Dmck
The last category is dmck that is integrated tightly with

a domain-specific language (DSL). A popular example is
MaceMC [8] from the Mace language development tool [9].
Mace is a DSL for building distributed systems.

Pros: Transparency: No engineering effort is required
to insert an interpositioning layer; when using the language,
developers declare distributed events, which will automati-
cally be intercepted by MaceMC. DSL-interposed dmck is
transparent only to systems written in the DSL. Extensibil-
ity: Permuting new types of events can be done by modi-
fying the DSL compiler to define additional domain-specific
events to permute. Versatility: By intercepting events at
the DSL level, the model checker can analyze the events as
the application-specific information is not lost. Compared to
application-interposed dmck which interposes “mainstream”
programming languages, DSL-interposed dmck is harder to
extend; only few developers understand specific DSL.

Cons: Adoptability: The biggest drawback of DSL-level
interpositioning is its adoptability. If the DSL is not popu-
lar, then the included dmck is of little use in practice. De-
spite of MaceMC popularity in the research community (as
it is open sourced) we are not aware of real deployed dis-
tributed systems that use Mace language. Thus, techniques
implemented in MaceMC [3, 6]) must be re-implemented
from scratch to be integrated to other systems.

4. SAMC AND INTEGRATION
There are three important parts of SAMC: the interposi-

tioning layer, the dmck server side (including the interface
between the two) and the workload driver. Table 2 shows
the code size of the common part of SAMC, the simple inte-
gration (e.g., SampleSys with a minimum requirement and
default exploration; SampleSys is described in Appendix),
and an advanced one (e.g., integration to ZooKeeper with

1 pointcut sendMsg(Msg m) :
2 call(public void *.sendMsg(Msg)) && args(v);
3
4 void around(Msg m) : sendMsg(m) {
5 Event e = new Event();
6 e.addKV (‘eventId’, String.hash(m.toString));
7 e.addKV (‘sender’, m.sender);
8 e.addKV (‘receiver’, m.receiver);
9 e.addKV (‘vote’, m.vote);
10 e.addKV (‘myVote’, s.myVote);
11 dmckServer.addEvent(e);
12 proceed();
13 }

Figure 2: Interpositioning.

advanced white-box DPOR and symmetry algorithms [11]).
Currently, SAMC can be easily integrated to distributed
systems written in Java. We target Java because many cloud
distributed systems under the Apache Software Foundation
(ASF) are written in Java. Non-Java target systems require
interpositioning methods in their corresponding program-
ming languages.

4.1 Interpositioning
To interpose SAMC to a target system, a tester per-

forms the following steps. First, the tester identifies im-
portant events (e.g., send message, disk read/write) whose
timing should be controlled; an important event is usually
an application-specific function, for example, sendMsg(Msg
M). Second, the tester weaves the function call with a sim-
ple pointcut in AspectJ (an AOP tool for Java) as shown
in line 1-2 in Figure 2. AspectJ is used for not cluttering
the target system with interpositioning code. The“makefile”
should be modified as well to include aspect code. We pro-
vide pointcut templates for novice users. Third, the tester
converts application-specific events (e.g., Msg) into a generic
structure to be sent via the server interface.

4.2 Event Key-Value Interface
The communication interface between the interposition

layer and the dmck server must stay the same for different
target systems. Thus, we use an abstraction Event, which
is a set of key-value pairs. The tester can define any key-
value pairs. The minimum requirement is the eventId key
whose value is a unique event ID. For example, in line 6 in
Figure 2, we set the eventId as the hash value of Msg m.
(In Section 2, a, b, c, and d can be considered as an event
ID). The dmck server will use event IDs to remember the
permutation/exploration history (thus, an event ID cannot
be a random, non-deterministic, or a simplistic ID).

If the tester wants to use white-box information about the
event for faster state-space exploration, the tester can in-
corporates more information in the Event abstraction. For
example, in line 7-10 in Figure 2, the tester incorporates
more application-specific information such as the sender

and receiver nodes and the vote number.
After Event is populated, the tester can easily send it

to the server using an RPC (Java RMI in line 11; can be
extended to language-agnostic client-server interface). At
this point, the event in the target code (i.e., sendMsg(m))
is blocked and cannot continue until the RPC returns (i.e.,
until the dmck server enables the event).

4.3 Dmck Server
The server side maintains a queue of outstanding events.

The exploration algorithm decides which events should be
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1 while (!noNewPath()) {
2 cleanAndSetup();
3 runProtocol();
4 checkResult(); // can stop here
5 }

Figure 3: Workload Driver.

enabled (by returning from the RPC call). By default,
SAMC runs a depth-first search (DFS) or Random algo-
rithms. These algorithms do not need white-box information
and thus can work solely based on eventID (e.g., permute
event IDs a, b, c, and so on). For DFS and Random, the
tester does not need to add new code to the server.

We also provide more advanced algorithms such as dy-
namic partial order reduction (DPOR) and symmetry [11].
Let’s consider creating a DPOR algorithm: “a message to a
given node is independent of other concurrent messages des-
tined to other nodes” [13, 15]. This algorithm requires infor-
mation about the message receiver (which we already col-
lected above). At the server side, the tester can implement
this algorithm by using event.getValue(‘receiver’).

Our framework empowers testers to develop new explo-
ration algorithms. The goal of an exploration algorithm is to
decide which event e to enable. Here, e is essentially a func-
tion of (1) the queue of outstanding events, (2) the permu-
tation history, and (3) the state of the target system. That
is, e=func(queue,history,state);. In our framework, (1)
and (2) are available by default. The system state (3) is
application specific and can be “piggy-backed” with event
interpositioning (e.g., a simple myVote local state in line 10
in Figure 2). There are other ways to pass local states to
the server (out of the scope of the paper).

After creating a custom exploration (func), the tester can
enable the chosen event by calling enable(e). After this, the
server waits for one second (configurable) to let the target
system quiesces before the server enables a new event. That
is, as an event is enabled, the target system might generate
more events (a reaction) and the dmck server must wait for
the new events to be recorded. A faster wait time is possible
but requires more modifications in the target code (out of
the scope of this paper).

To uncover deep bugs, our server can also enable failure

events (e.g., crashes); bugs often appear in recovery paths [4,
7, 11]. Failure events do not originate from the interposition
layer. The tester must specify at the server side the specific
command lines to kill a particular node/process.

4.4 Workload Driver and Replay
The workload driver contains a few simple steps as shown

in Figure 3. The driver communicates with the dmck server
to check if all paths (based on the chosen algorithm) have
been explored (noNewPath()). The rest of the steps are ap-
plication specific; the testers must specify how to clean and
setup the target system (line 2), run the distributed protocol
to be tested (line 3), and check the result of the execution
(line 4). An iteration of the while loop represents an execu-
tion (a path) of a sequence of events (e.g., acbd; §2).

For example, to test a distributed commit protocol, the
cleanAndSetup() starts the system from scratch and pre-
pare a preliminary data, the runProtocol() contains code
that has concurrent updates to different nodes in the tar-
get system, and the checkResult() searches assertion vio-
lations in the log files maintaned by each node in the target
system. Since a log file is a local view only, the tester can

also deploy global checks at the dmck server side that the
checkResult() can check.

If an error (bug) is found, the path (sequence of events)
to the error is recorded by the dmck server. The tester can
also save the log files. SAMC also provides a replay tool
(not shown); the tester can feed SAMC the buggy path and
SAMC can deterministically replay the path.
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