
Scalability Bugs: When 100-Node Testing is Not Enough

Tanakorn Leesatapornwongsa
University of Chicago

tanakorn@cs.uchicago.edu

Cesar A. Stuardo
University of Chicago

castuardo@uchicago.edu

Riza O. Suminto
University of Chicago

riza@cs.uchicago.edu

Huan Ke
University of Chicago

huanke@uchicago.edu

Jeffrey F. Lukman
University of Chicago

lukman@cs.uchicago.edu

Haryadi S. Gunawi
University of Chicago

haryadi@cs.uchicago.edu

ABSTRACT

We highlight the problem of scalability bugs, a new class of bugs

that appear in “cloud-scale” distributed systems. Scalability bugs

are latent bugs that are cluster-scale dependent, whose symptoms

typically surface in large-scale deployments, but not in small or

medium-scale deployments. The standard practice to test large dis-

tributed systems is to deploy them on a large number of machines

(“real-scale testing”), which is difficult and expensive. New meth-

ods are needed to reduce developers’ burdens in finding, reproduc-

ing, and debugging scalability bugs. We propose “scale check,” an

approach that helps developers find and replay scalability bugs at

real scales, but do so only on one machine and still achieve a high

accuracy (i.e., similar observed behaviors as if the nodes are de-

ployed in real-scale testing).

CCS CONCEPTS

• Computer systems organization → Distributed architectures;

Cloud computing; Dependable and fault-tolerant systems and net-

works;

KEYWORDS

Dependability, distributed systems, scalability, storage, testing

ACM Reference format:

Tanakorn Leesatapornwongsa, Cesar A. Stuardo, Riza O. Suminto, Huan

Ke, Jeffrey F. Lukman, and Haryadi S. Gunawi. 2017. Scalability Bugs:

When 100-Node Testing is Not Enough. In Proceedings of HotOS ’17,

Whistler, BC, Canada, May 08-10, 2017, 6 pages.

https://doi.org/10.1145/3102980.3102985

1 INTRODUCTION

“For Apache Hadoop, testing at thousand-node scale

has been one of the most effective ways of finding

bugs, but it’s both difficult and expensive. It takes con-

siderable expertise to deploy and operate a large-scale

cluster, much less debug the issues. Running such a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5068-6/17/05. . . $15.00
https://doi.org/10.1145/3102980.3102985

cluster also costs thousands of dollars an hour, mak-

ing scale testing impossible for the solo contributor.

As it stands, we are heavily reliant on test clusters op-

erated by large companies to do scale testing. A way

of finding scalability bugs without requiring running

a large-scale cluster would be extremely useful.” —

Andrew Wang (Cloudera and Apache Hadoop PMC

Member and Committer).

As Ousterhout stated, “scale has been the single most important

force driving changes in system software over the last decade” [33].

Scale allows users to meet their increasing computing demands that

cannot be met in a single machine and allows service providers to

amass compute and storage resources from hundreds to thousands

of machines. A tremendous deployment scale can be witnessed in

the field. Tens of 500-node Cassandra clusters are running behind

Netflix, a total of 100,000 Cassandra nodes are reportedly deployed

in Apple, and 40,000 servers power up tens of Hadoop clusters at

Yahoo! [1, 13, 14].

While scale delivers many benefits, it creates new development

and deployment issues. Developers must ensure that their proto-

col designs are scalable, however until real-scale deployments take

place, unexpected bugs deep in the actual implementations are hard

to foresee. We believe that this new era of highly scalable distributed

systems gives rise to a new type of bugs, scalability bugs, latent

bugs that are scale dependent, whose symptoms surface in large-

scale deployments, but not necessarily in small/medium-scale de-

ployments.

As an example, let us consider a bug in Cassandra, a scalable

peer-to-peer key-value store. If a customer initially deploys a cluster

of 50 nodes and later scales it out with 50 additional nodes, the

operation can be done smoothly. However, if the customer deploys

a 200-node cluster and then adds 200 more nodes, the protocol that

rebalances the key-range partitions (which nodes should own which

key ranges) becomes CPU intensive as the calculation has anO (N 3)

complexity where N is the number of nodes. This combined with

the gossiping and failure detection logic leads to a scalability bug

that makes the cluster unstable (many live nodes are declared as

dead, making some data not reachable by the users).

We perform an in-depth study of 38 scalability bugs reported

from the deployments of popular large-scale systems such as Hadoop,

HBase, HDFS, Cassandra, Couchbase, Riak, and Voldemort. From

this study, we observed many challenges in finding, reproducing,

and debugging scalability bugs. As in the example above, bug symp-

toms sometimes surface only in large deployment scales (e.g.,N>100

nodes), hence small/medium-scale testing is not enough. Yet, not all

https://doi.org/10.1145/3102980.3102985
https://doi.org/10.1145/3102980.3102985

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada T. Leesatapornwongsa et al.

developers have large test budgets, and even when they do, debug-

ging on hundreds of nodes is time consuming and difficult, as also

alluded in the developer’s quote above. Furthermore, protocol algo-

rithms can be scalable in the design sketches, but not necessarily

in the real deployments; there are specific implementation details

whose implications at scale are hard to predict.

Existing testing practices however do not address the challenges

above. For example, testing on “mini” clusters may not reveal all

the scalability bugs. Extrapolation also does not work if the bug

symptoms have not yet to surface in smaller scales. Simulation can

verify large-scale models, but not the actual implementation code.

Real-scale testing and debugging at the same scale as in customer-

site deployments is expensive.

New solutions are needed to reduce developers’ burdens in find-

ing and debugging scalability bugs. We propose “scale check,” an

approach that helps developers find and replay scalability bugs at

real scales, but do so on one machine and still achieve a high ac-

curacy. A key challenge is to colocate as many nodes as possible

(e.g., hundreds) on one machine but still observe a similar behavior

as real-scale testing. We will discuss the technical challenges that

arise to achieve such a vision; for example, how to reduce coloca-

tion bottlenecks and emulate/replay CPU-intensive processing as if

they run on independent machines without contention delays.

In subsequent sections, we present a narrative of scalability bugs

that repeatedly appear in Cassandra development (§2), the lessons

learned from our bug study (§3), the state of the art of large-scale

testing (§4), our proposed solution (§5), other colocation challenges (§6),

current state and future work (§7), and promising initial results (§8).

2 THE STORY OF CASSANDRA

Our journey in understanding scalability bugs began when we ob-

served repeated “flapping” problems in large-scale Cassandra de-

ployments. Flapping is a cluster instability problem where node’s

up/down status continuously flaps. A “flap” is when a node X marks

a peer node Y as down (and soon marks Y as alive again). We rig-

orously study a series of Cassandra bugs below that surfaced as the

code evolved.

In Bug #C3831 [2], when a node D is decommissioned from a

cluster ring, D initiates a gossip telling that all other nodes must re-

balance the ring’s key-ranges. This scale-dependent “pending key-

range calculation” is CPU intensive withO (MN 3loд3(N)) complex-

ity; M is the list of key-range changes in the gossip message. This

in turn leaves many gossips not propagated on time, creating flap-

ping symptoms that only appear at scale (at 200+ nodes; §8). The

developers then optimized the code to O (MN 2loд2 (N)) complexity.

Soon afterwards (Bug #C3881 [3]), Cassandra added the concept

of virtual partitions/nodes (e.g., P=256 per physical node). As an

implication, the fix above did not scale as “N ” becomes N×P . The

bug was fixed with a complete redesign of the pending key-range

calculation, making it O (MNPloд2(NP)).

About a year later (C5456 [4]), Cassandra code employs multi-

threading between the pending key-range calculation and the gossip

processing with a coarse-grained lock to protect sharing of the ring

table. Unbeknownst to the developers, at scale, the key-range cal-

culation can acquire the lock for a long time, causing flapping to

reappear again. The fix clones the ring table for the key-range cal-

culation, to release the lock early.

Later on (C6127 [5]), a similar bug reappeared. In the above

cases, the problems appeared when the cluster grows/shrinks grad-

ually. However, if customers bootstrap a large cluster (e.g., 500+

nodes) from scratch (i.e., all nodes do not know each other, with

no established key ranges), the execution traverses a different code

path that performs a fresh ring-table/key-range construction with

O (MN 2) complexity.

The story continues on (C6345, C6409, etc.). Fast forward to-

day, Cassandra developers recently started a new umbrella ticket

for discussing “Gossip 2.0,” supposedly scalable to 1000+ nodes

[7, 8]. Similar to Cassandra, other large-scale systems are prone to

the same problem. So far, we have collected and analyzed 9 Cas-

sandra, 5 Couchbase, 2 Hadoop, 9 HBase, 11 HDFS, 1 Riak, and

1 Voldemort scalability bugs, all caused user-visible impacts. This

manual mining was arduous because there is no searchable jargon

for “scalability bugs”; we might have missed other bugs.

3 CHALLENGES

From all the bugs we studied, we observe many challenges in com-

bating scalability bugs.

• Not all developers have large test budgets: Scalability bugs only

surface at scale (§8). However, the luxury of using large test clus-

ters tends to be accessible only to developers in large companies.

When C6127 was submitted by a customer with 500+ nodes, the de-

velopers assigned to fix the bug did not have access to a cluster of

the same scale, delaying the time to fix.

• Long and difficult large-scale debugging: Even when developers

acquire large test clusters, we observe many hurdles of deploying

and debugging the buggy protocol at real scale. Important to note,

debugging is not a single iteration; developers often need to replay

the whole process numerous times. The scalability bugs we studied

took 1 month to fix on average (with a maximum of 5 months),

and not to mention the tens of back-and-forth discussion comments

among the developers.

• Scalable in design, but not in implementation/practice. One might

wonder if the bugs can be avoided by simply verifying the high-

level design. Unfortunately, the root causes are deep in the imple-

mentation details and hard to predict. For example, the gossip-related

bugs in §2 involve the accrual failure detector/gossiper [27] which

was actually adopted by Cassandra for its scalable property [29].

However, the design model and proof did not account gossip pro-

cessing time during bootstrap/cluster-rescale, whose duration is hard

to predict (ranges from 0.001 to 4 seconds in our test). For C6127,

the developers tried to “do the math” [5] but failed. This is because

in the actual implementation, the gossip protocol is overloaded with

many other operational purposes (e.g., announcing boot/rescale changes)

beyond the original design. As code evolves, new scalability bugs

reappear.

• Diverse protocols. While most works focus on the scalability of

the data paths (read/write protocols), scalability correctness is not

merely about the data paths. The bugs we studied lingered in diverse

data and control paths, including bootstrap, scale-out, decommis-

sion, rebalance, and failover protocols, all must be tested at scale.

http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/CASSANDRA-5456
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6345
http://issues.apache.org/jira/browse/CASSANDRA-6409
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127

Scalability Bugs: When 100-Node Testing is Not Enough HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

4 STATE OF THE ART

The last few years have seen a rise of research that addresses for

scalability bugs in distributed systems and parallel applications, which

can be categorized into four techniques.

Testing/benchmarking is arguably the developers’ most popular

choice. A standard practice is to test large-scale systems on “mini”

clusters. If no bugs appear, the code “passes” the test. While this ap-

proach is straightforward, mini clusters tend to be order(s) of magni-

tude smaller than the real deployments [30, §2.2], hence bugs might

not surface. Real-scale testing on the other hand is not economical,

as illustrated in Figure 1a.

Simulation depends on the developers to model their code and

then simulate the model in different scales [17, 28]. This approach

is popular for modeling HPC applications, but is rarely used for

server/infrastructure code which tends to be more complex to model.

As alluded earlier, a design/model can look scalable but the actual

implementation can still contain unforeseen bugs.

Extrapolation learns system behaviors in small scale (e.g., 4-8

nodes) and then extrapolates them to larger scales [28, 41]. If the

behavior in the real deployment is different than the extrapolated

behavior, the code might be buggy. Again, bug symptoms might

not appear in the small training scale, hence the behaviors are hard

to extrapolate accurately.

Emulation runs implementation code at real scale but in an em-

ulated (smaller) environment. For example, DieCast [24] can colo-

cate many VMs on a single machine as if they run individually with-

out contention. The trick is adding “time dilation factor” (TDF) sup-

port into the VMM [25]. For example, colocating 10 VMs (TDF=10)

implies that for every second, each emulated VM believes that time

has only advanced by 100 ms. With a higher colocation factor (TDF=N),

each debugging iteration will imply a much longer run (N×t), as il-

lustrated in Figure 1b.

Another emulation technique, Exalt [34], targets I/O-intensive

scalability tests. With Exalt, user data is compressed to zero byte

on disk (but the size is recorded). With this, Exalt can colocate

100 HDFS datanodes on one machine without space contention.

The evaluation mainly tests the scalability of the (non-emulated)

HDFS master node and may not discover bugs in the emulated

datanodes [34, §4.1]. While Exalt targets data paths and I/O em-

ulation, 47%1 of the scalability bugs that we studied involve com-

plex scale-dependent CPU computations in data and control paths,

which to the best of our knowledge are not addressed in existing

literature.

5 SCALE CHECK

We believe new methods are needed to help developers check their

systems/protocols implementation at real scale but without the hur-

dles of running large test clusters. In our work, we explore a new

approach to find and replay scalability bugs in a “cheap” way such

as on one machine, which we name single-machine scale check (or

just “scale check” short).

The research question to address is: how to colocate a large num-

ber of CPU-intensive nodes on one machine with limited resources

and yet still achieve high accuracy? High accuracy implies that the

1The other 53% are unexpected serializations ofO (N) operations, which can be caught
by slightly extending our program analysis (§5).

N N
.. ..

2 2

#
M

a
c
h

in
e

s

t

(1 core)

(c) PIL Replay

1 2 .. N 1 2 .. N

1 1

i

Node

1 2

(a) Real scale (b) Basic colocation

sleep()

t+eTime

1
 M

a
c
h

in
e

1

2

...

N

1
 M

a
c
h

in
e

sleep()

...

...

Nxt

N

Figure 1: Various scale-testing approaches. The left figure (a)

illustrates a real-scale testing where the system/protocol under test is de-

ployed on N machines, which illustratively takes t time to complete. The

top figure (b) depicts a basic colocation where N nodes are packed into a

single machine and exhibit CPU contention and context switching, which

can take N×t time to complete (in one-processor scenario). The bottom

figure (c) illustrates our processing illusion (PIL) (§5). Here, expensive

functions are emulated with sleep(), thus the test time t+e is similar to

the real-scale testing.

colocated nodes generate a similar behavior as if they run on inde-

pendent machines. The reason for inaccuracy is illustrated in Fig-

ures 1a and 1b. With real-scale testing (Figure 1a), the protocol un-

der test might finish in t seconds. However, with a basic colocation,

the CPU-intensive nodes contend with each other in one machine.

With only just 1 processor core for example, the protocol under test

might finish in N×t seconds, hence the inaccuracy.

To address this, below we present the concept of processing illu-

sion (PIL) and how to find PIL-safe functions and generate output

of PIL-replaced functions.

• Processing Illusion (PIL) To achieve accuracy, we must address

the CPU contention delays (N×t) in basic colocation (Figure 1b).

We propose emulating CPU-intensive processing with processing

illusion (PIL), which replaces an actual processing with sleep().

With PIL, an expensive function will sleep and wake up in accurate

time with the correct output. As illustrated in Figure 1c, if some

computations can be emulated with sleep() and the output data is

automatically generated given the input data, then the resulting time

is more accurate (t+e) to the one in real-scale testing.

PIL extends the intuition behind data-space emulation [34], where

the insight is: “how data is processed is not affected by the content

of the data being written, but only by its size.” For PIL, our insight

is that “the key to computation is not the intermediate results, but

rather the execution time and eventual output.” In other words, what

matters is the global cascading implication of the long execution

time of the individual nodes.

• Finding PIL-safe and offending functions: One key question

PIL method raises is: which functions can be safely replaced with

sleep() without changing the whole processing semantic? We name

them “PIL-safe functions/code blocks.” We set a rule that a PIL-safe

function must have a memoizable output (i.e., a deterministic out-

put on a given input) and not have any side effects such as disk

I/Os, network messages, and blocking mechanisms such as locks.

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada T. Leesatapornwongsa et al.

updateRing O(N3)

calcRanges O(N2)
...

@scaledep
list ring;

updateRing(){
 for(n in ring)
 for(n in ring)
 for(n in ring)
 ring = ...; }

Offending
functions:

f() {
 in = ring;
 updateRing();
 out = ring;
 store(in,out,t);
} Nxt

1 2 .. N 1 2 .. N

Auto Instrument

N N
.. ..

2 2
1 1

sleep()

t+e

a
Memoization
(with basic
colocation) f() {

 in = ring;
 t = getTime(in);
 sleep(t);
 ring = getOut(in);
}

Auto PIL Infusion PIL Replay

1
 M

a
c
h

in
e

1
 M

a
c
h

in
e

Finder

b

c d e f

sleep()

...

...

Figure 2: The proposed flow of an automated scale-check process. The figure is described in Section §7.

Many functions satisfy the rule above, but not all PIL-safe func-

tions should “take the PIL”; that is, they might not be the “offend-

ing” functions that lead to scalability bugs. Thus, we raise another

key question: which functions are offending?

We learned that many offending functions contain loops that are

cluster-size dependent (e.g., a for-loop that iterates a cluster-ring

data structure). Some of the loops can also be a nested loop. Find-

ing such code blocks are unfortunately not straightforward. Scale-

dependent loops can span across multiple functions; in C6127,O (N 3)

loops span 1000+ LOC across 9 functions. Moreover, they can be in-

side some if-else branches reachable only from a certain path/workload;

in C6127, the last O (N 2) loop is only exercised if the cluster boot-

straps from scratch. All of these suggest that finding PIL-safe and

offending functions require an advanced program analysis (which

we discuss later). Such a tool will guide the developers to decide

which paths/protocols to test, to uncover potential scalability bugs.

•Memoizing PIL-replaced functions: PIL-safe and offending func-

tions will become “PIL-replaced functions” where their actual pro-

cessing will be skipped during replays with sleep(t). Thus, two

more questions to address are: how to produce the output if the ac-

tual computation is skipped and how to predict the actual compute

time (t) accurately?

The answer to the first question is pre-memoization. That is, given

a PIL-replaced code block, we need to first execute the code block

and record the input/output around it. The only way to do this on a

single machine is to run the protocol with basic colocation, which

will consume some time due to the CPU contention delays. How-

ever, this will only be a one-time overhead, while the fast PIL-

infused replay stage can be repeated numerous times without con-

tention.

It is challenging to pre-memoize PIL-replaced functions with an

offline input-sampling method without running the protocol at least

once. The reason is that, in the context of large-scale, decentral-

ized, non-deterministic distributed systems, covering all possible in-

put/output pairs may require an “infinite” time and storage space. In

other words, input/output pairs depend on the precise order of mes-

sage arrivals, which can be random. In a ring rebalancing algorithm

for example, with N nodes and P partitions/node, there are (N NP)2

input/output pairs given all possible orderings. Thus, to cap the state

space, the pre-memoization stage also records message ordering,

which will be deterministically enforced during PIL-infused replay.

With this “order determinism,” we do not have to record all possible

input/output pairs. We simply record pairs that are observed in one

particular run of the protocol test.

The answer to the second question (predicting t) is in-situ time

recording; in addition to storing input/output pairs we also store

input/duration pairs (Figure 2c). It is almost impossible to predict

compute time with a prediction/static-analysis approach. As men-

tioned above, nested loops can span across multiple functions with

many if-else conditions. In a Cassandra bug, the duration of an

offending code block can range from 0.001 to 4 seconds depending

on multi-dimensional inputs. One might also wonder whether time

recording is enough to hint the developers of the potential scalabil-

ity bugs (e.g., 4 seconds of compute should raise a red flag). As

mentioned earlier, every implementation is unique (§3); for exam-

ple, in C5456, if the lock is fine-grained, the long compute will not

cause cascading impacts. Furthermore, patches of scalability bugs

do not always remove the expensive computation. Put simply, scala-

bility bugs are not merely about the expensive functions, but rather

their global implications.

6 OTHER COLOCATION CHALLENGES

PIL successfully reduces CPU contention, however as we colocate

more nodes, before we hit 100% CPU utilization, we hit other colo-

cation bottlenecks such as memory exhaustion and process/thread

context-switching delays. We share some of the interesting stories

below, which all point to the fact that current distributed systems

are not built with scale-checkability in mind.

First, managed language runtimes consume non-negligible mem-

ory overhead (e.g., 70MB/process in Java), which can prohibit colo-

cation of hundreds of nodes. Second, as each node runs multiple

daemon threads (gossiper, failure detector, etc.), with high coloca-

tion, thousands of threads cause severe context switching and long

queuing delays. Finally, developers sometimes write simple, but in-

efficient and space-oblivious code; for example, in a rebalance pro-

tocol, each node over-allocates (N−1)×P×1.3MB partition services

while only needing P×1.3MB services eventually at the end.

Note that with N -node colocation, all the bottlenecks above are

amplified by N times. This opens up a new research challenge: how

to re-design existing distributed systems to be scale-checkable? Our

current solution is to redesign the target systems and their unit tests,

for example by running all nodes in one process (to reduce per-

process runtime overhead) and redesign the code non-intrusively

to a “global” event-driven architecture which mimics staged event-

driven architecture (SEDA) [35], but with one queue and one multi-

threaded handler for the whole cluster (to reduce context switching

overhead).

7 CURRENT STATE AND FUTURE WORK

To reduce developers’ burdens, the entire process above must be

done automatically. Figure 2 depicts the whole scale-check pro-

cess that we propose. a© First, developers lightly annotate (e.g.,

<30 LOC) data structures that are scale dependent. b© The PIL-

safe and offending function finder (a program analysis) will find

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-5456

Scalability Bugs: When 100-Node Testing is Not Enough HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

 0

 100

 200

 300

 32 64 128 256

#
F

la
p
s
 (

x
1
0
0
0
)

#Nodes

(a) c3831: Decommission

Colo
Real

SC+PIL

 0

 10

 20

 30

 40

 32 64 128 256

#
F

la
p
s
 (

x
1
0
0
0
)

#Nodes

(b) c3881: Scale-Out

Colo
Real

SC+PIL

 0

 2

 4

 6

 8

 32 64 128 256

#
F

la
p
s
 (

x
1
0
0
0
)

#Nodes

(c) c5456: Scale-Out

Colo
Real

SC+PIL

Figure 3: Initial results. The figures show the results of reproducing three scalability bugs in Cassandra (c3831 [2], c3881 [3], and c5456 [4]). The

y-axis shows the number of flaps (as explained in §2) when Cassandra is deployed on a number of nodes as plotted in the x-axis. The Real, Colo, and

SC+PIL lines represent the number of flaps observed in real-scale testing, basic colocation, and PIL-infused replay respectively. The figures show that the

results of SC+PIL are close to Real.

loops that are scale dependent (that iterate on the scale-dependent

data structures). This program analysis will provide reports of of-

fending functions along with the paths (if-else branches) that would

exercise them, so that the developers can set up the corresponding

test workloads (e.g., rebalancing, decommissioning). c© The finder

also automatically inserts input/output/time recording around the of-

fending functions. d© The target protocols are executed with basic

colocation, which takes time and is inaccurate, but only a one-time

overhead. e© The deterministic replayer automatically replaces the

expensive functions with sleep(t) and copy the output from the

memoization database. f© Finally, the fast and accurate PIL-infused

replay can begin, and if needed, the developers can add more logs

to debug the code at step e© and replay again.

• Current state: We have built d© the PIL memoizer and f© re-

player with promising results for Cassandra (§8). The PIL-replaced

functions are currently picked and replaced manually.

• Future work: Our next major step is to automate the entire scale-

check process (a©- c© and e© in Figure 2), including the program

analysis to find offending functions and automate PIL instrumenta-

tion, and integrate the process to other distributed systems beyond

Cassandra.

8 INITIAL RESULTS

This section presents some promising results in scale-checking Cas-

sandra, geared towards answering the following two questions: (1)

Can scale-check reproduce known scalability bugs? (2) Is scale-

check accurate?

To measure accuracy, we compare scale-check results with real

deployments of 32, 64, 128, and 256 nodes. Each (Nome [9]) ma-

chine has 16-core AMD Opteron(tm) 8454 processors with 32-GB

DRAM. As it is hard to acquire 256 machines (especially near dead-

lines), we pack a maximum of 8 nodes on one physical machine; for

our target protocols, each node only uses at most 2 busy cores (e.g.,

gossiper and gossip-processing threads). Scale-check only runs on

one such machine.

Figure 3 show the three bugs we have reproduced (C3831 [2],

C3881 [3], and C5456 [4]). The figures highlight that we can repro-

duce the same scalability bug symptoms on one machine. Specif-

ically, the bug symptom shown in Figure 3 is the total number

of flaps (alive-to-dead transitions; §2) observed in the whole clus-

ter during the testing of the protocols. As shown, basic colocation

(“Colo”) leads to an inaccurate results that are far off from the real-

scale testing (“Real”). However, our PIL-based scale-check process

(“SC+PIL”) mimics similar behaviors observed in real-scale testing.

The figures also show that significant #flaps only surface in larger

deployment scales. For example, the flapping symptoms in C3831

and C5456 are not observable in 128-node deployments, again ac-

centuating the need for real-scale emulation.

In terms of memoization and replay time, for 256-node coloca-

tion, the memoization time for the bugs we reproduced takes be-

tween 7 to 125 minutes while the replay time is only between 4

to 15 minutes, similar to the real deployments; the basic coloca-

tion does not take N×t duration because one node only consumes

2 cores (the machine has 16 cores) and also not every node is busy

all the time. With PIL-infused replays, developers can have enough

time budget to debug the buggy protocol numerous times as needed

to discover the root cause.

Currently, on the 16-core 32-GB Nome machine, we can reach

a maximum colocation factor of 512. When we tried colocating

600 nodes, we hit one of the following limitations: high CPU con-

tention (>90% utilization), memory exhaustion (nodes receive out-

of-memory exceptions and crash), or high event lateness (queuing

delays from thread context switching).

9 CONCLUSION

Modern distributed systems are complex and prone to many types

of bugs [21, 22], including concurrency [26, 32], configuration [37],

service dependency [40], error handling [31, 38], performance [15,

18, 19], and security [39] bugs. In this paper, we argue that scala-

bility bugs are new-generation bugs to combat in cloud-scale dis-

tributed systems, which we believe will raise many interesting re-

search questions. More challenges lie ahead. Recent work reported

a wide range of latent scalability bugs that depend on different axes

of scale: cluster size, data/metadata size, load, and failure [16, 21,

23]. We hope our work will call for more innovations in this new

area of research.

http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/CASSANDRA-5456
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/CASSANDRA-5456
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-5456

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada T. Leesatapornwongsa et al.

10 ACKNOWLEDGMENTS

We thank the anonymous reviewers for their tremendous feedback

and comments. This material was supported by funding from NSF

(grant Nos. CCF-1336580, CNS-1350499, CNS-1526304, and CNS-

1563956) as well as generous donations from Huawei, EMC, Google

Faculty Research Award, NetApp Faculty Fellowship, and CERES

Center for Unstoppable Computing. The experiments in this paper

were performed mainly in the NMC PRObE [10, 20] testbed, and

partially in the Utah Emulab [6, 36], Chameleon [12], and Univer-

sity of Chicago RIVER [11] testbeds, supported under NSF grants

Nos. CNS-1042537, CNS-1042543, CNS-1419165 and CNS-1405959.

REFERENCES
[1] Apache Cassandra. https://en.wikipedia.org/wiki/Apache_Cassandra.
[2] BUG: CASSANDRA-3831: scaling to large clusters in GossipStage impossible

due to calculatePendingRanges. https://issues.apache.org/jira/browse/
CASSANDRA-3831.

[3] BUG: CASSANDRA-3881: reduce computational complexity of processing
topology changes. https://issues.apache.org/jira/browse/CASSANDRA-3881.

[4] BUG: CASSANDRA-5456: Large number of bootstrapping nodes cause gossip
to stop working. https://issues.apache.org/jira/browse/CASSANDRA-5456.

[5] BUG: CASSANDRA-6127: vnodes don’t scale to hundreds of nodes. https://
issues.apache.org/jira/browse/CASSANDRA-6127.

[6] Emulab Network Emulation Testbed. http://www.emulab.net.
[7] Gossip 2.0. https://issues.apache.org/jira/browse/CASSANDRA-12345.
[8] Gossip 2.0. http://mail-archives.apache.org/mod_mbox/cassandra-dev/201609.

mbox/%3CCAHjqPuJMkfZwp9DDX45PNBNhkoGXsPW4TFT6Zxv%2BTTz_
Pg3Y%2Bg%40mail.gmail.com%3E.

[9] NMC PRObE Nome Nodes. https://www.nmc-probe.org/wiki/Nome:Nodes.
[10] Parallel Reconfigurable Observational Environment (PRObE). http://www.nmc-

probe.org.
[11] RIVER: A Research Infrastructure to Explore Volatility, Energy-Efficiency, and

Resilience. http://river.cs.uchicago.edu.
[12] The Chameleon Cloud Project. https://www.chameleoncloud.org/.
[13] Running Netflix on Cassandra in the Cloud. https://www.youtube.com/watch?

v=97VBdgIgcCU, 2013.
[14] Why the world’s largest Hadoop installation may soon become the norm. http://

www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-
may-soon-become-the-norm/, 2014.

[15] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance Debugging for Distributed Systems of
Black Boxes. In Proceedings of the 19th ACM Symposium on Operating

Systems Principles (SOSP), 2003.
[16] Peter Bodik, Armando Fox, Michael Franklin, Michael Jordan, and David

Patterson. Characterizing, Modeling, and Generating Workload Spikes for
Stateful Services. In Proceedings of the 1st ACM Symposium on Cloud

Computing (SoCC), 2010.
[17] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf. Using

Automated Performance Modeling to Find Scalability Bugs in Complex Codes.
In Proceedings of International Conference on High Performance Computing,

Networking, Storage and Analysis (SC), 2013.
[18] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F.

Wenisch. The Mystery Machine: End-to-end Performance Analysis of
Large-scale Internet Services. In Proceedings of the 11th Symposium on

Operating Systems Design and Implementation (OSDI), 2014.
[19] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake,

and Haryadi S. Gunawi. Limplock: Understanding the Impact of Limpware on
Scale-Out Cloud Systems. In Proceedings of the 4th ACM Symposium on Cloud

Computing (SoCC), 2013.
[20] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt Lloyd. Probe: A

thousand-node experimental cluster for computer systems research. USENIX

;login:, 38(3), June 2013.
[21] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat

Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono,
Jeffrey F. Lukman, Vincentius Martin, and Anang D. Satria. What Bugs Live in
the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of the

5th ACM Symposium on Cloud Computing (SoCC), 2014.
[22] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.

Satria, Jeffry Adityatama, and Kurnia J. Eliazar. Why Does the Cloud Stop
Computing? Lessons from Hundreds of Service Outages. In Proceedings of the

7th ACM Symposium on Cloud Computing (SoCC), 2016.

[23] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo,
Tom Bergan, Madan Musuvathi, Zheng Zhang, and Lidong Zhou. Failure
Recovery: When the Cure Is Worse Than the Disease. In The 14th Workshop on

Hot Topics in Operating Systems (HotOS XIV), 2013.
[24] Diwaker Gupta, Kashi Venkatesh Vishwanath, and Amin Vahdat. DieCast:

Testing Distributed Systems with an Accurate Scale Model. In Proceedings of

the 5th Symposium on Networked Systems Design and Implementation (NSDI),
2008.

[25] Diwaker Gupta, Kenmeth Yocum, Marvin McNett, Alex C. Snoeren, Amin
Vahdat, and Geoffrey M. Voelker. To Infinity and Beyond: Time-Warped
Network Emulation. In Proceedings of the 3rd Symposium on Networked

Systems Design and Implementation (NSDI), 2006.
[26] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving Practical
Distributed Systems Correct. In Proceedings of the 25th ACM Symposium on

Operating Systems Principles (SOSP), 2015.
[27] Naohiro Hayashibara, Xavier Defago, Rami Yared, and Takuya Katayama. The

Phi Accrual Failure Detector. In The 23rd Symposium on Reliable Distributed

Systems (SRDS), 2004.
[28] Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin,

Gregory L. Lee, Martin Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou,
Zhezhe Chen, and Feng Qin. Debugging High-Performance Computing
Applications at Massive Scales. Communications of the ACM (CACM), 58(9),
September 2015.

[29] Avinash Lakshman and Prashant Malik. Cassandra - A Decentralized Structured
Storage System. In The 3rd ACM SIGOPS International Workshop on Large

Scale Distributed Systems and Middleware (LADIS), 2009.
[30] Tanakorn Leesatapornwongsa and Haryadi S. Gunawi. The Case for Drill-Ready

Cloud Computing. In Proceedings of the 5th ACM Symposium on Cloud

Computing (SoCC), 2014.
[31] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman,

and Haryadi S. Gunawi. SAMC: Semantic-Aware Model Checking for Fast
Discovery of Deep Bugs in Cloud Systems. In Proceedings of the 11th

Symposium on Operating Systems Design and Implementation (OSDI), 2014.
[32] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S.

Gunawi. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in
Datacenter Distributed Systems. In Proceedings of the 21st International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2016.
[33] John Ousterhout. Is scale your enemy, or is scale your friend?: technical

perspective. Communications of the ACM (CACM), 54(7), July 2011.
[34] Yang Wang, Manos Kapritsos, Lara Schmidt, Lorenzo Alvisi, and Mike Dahlin.

Exalt: Empowering Researchers to Evaluate Large-Scale Storage Systems. In
Proceedings of the 11th Symposium on Networked Systems Design and

Implementation (NSDI), 2014.
[35] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for

Well-Conditioned, Scalable Internet Services. In Proceedings of the 18th ACM

Symposium on Operating Systems Principles (SOSP), 2001.
[36] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated
Experimental Environment for Distributed Systems and Networks. In
Proceedings of the 5th Symposium on Operating Systems Design and

Implementation (OSDI), 2002.
[37] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and

Shankar Pasupathy. Early Detection of Configuration Errors to Reduce Failure
Damage. In Proceedings of the 12th Symposium on Operating Systems Design

and Implementation (OSDI), 2016.
[38] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,

Yongle Zhang, Pranay U. Jain, and Michael Stumm. Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in Distributed
Data-Intensive Systems. In Proceedings of the 11th Symposium on Operating

Systems Design and Implementation (OSDI), 2014.
[39] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazieres. Securing

Distributed Systems with Information Flow Control. In Proceedings of the 5th

Symposium on Networked Systems Design and Implementation (NSDI), 2008.
[40] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. Heading

Off Correlated Failures through Independence-as-a-Service. In Proceedings of

the 11th Symposium on Operating Systems Design and Implementation (OSDI),
2014.

[41] Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi. Vrisha: Using Scaling
Properties of Parallel Programs for Bug Detection and Localization. In
Proceedings of the 20th IEEE International Symposium on High Performance

Distributed Computing (HPDC), 2011.

https://en.wikipedia.org/wiki/Apache_Cassandra
https://issues.apache.org/jira/browse/CASSANDRA-3831
https://issues.apache.org/jira/browse/CASSANDRA-3831
https://issues.apache.org/jira/browse/CASSANDRA-3881
https://issues.apache.org/jira/browse/CASSANDRA-5456
https://issues.apache.org/jira/browse/CASSANDRA-6127
https://issues.apache.org/jira/browse/CASSANDRA-6127
http://www.emulab.net
https://issues.apache.org/jira/browse/CASSANDRA-12345
http://mail-archives.apache.org/mod_mbox/cassandra-dev/201609.mbox/%3CCAHjqPuJMkfZwp9DDX45PNBNhkoGXsPW4TFT6Zxv%2BTTz_Pg3Y%2Bg%40mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/cassandra-dev/201609.mbox/%3CCAHjqPuJMkfZwp9DDX45PNBNhkoGXsPW4TFT6Zxv%2BTTz_Pg3Y%2Bg%40mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/cassandra-dev/201609.mbox/%3CCAHjqPuJMkfZwp9DDX45PNBNhkoGXsPW4TFT6Zxv%2BTTz_Pg3Y%2Bg%40mail.gmail.com%3E
https://www.nmc-probe.org/wiki/Nome:Nodes
http://www.nmc-probe.org
http://www.nmc-probe.org
http://river.cs.uchicago.edu
https://www.chameleoncloud.org/
https://www.youtube.com/watch?v=97VBdgIgcCU
https://www.youtube.com/watch?v=97VBdgIgcCU
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/

