
Towards Pre-Deployment Detection of

Performance Failures in Cloud Distributed Systems

Riza O. Suminto∗, Agung Laksono†, Anang D. Satria†, Thanh Do‡, Haryadi S. Gunawi∗

∗University of Chicago †Surya University ‡Microsoft Gray Systems Lab

1 Introduction

Modern distributed systems (“cloud systems”) have

emerged as a dominant backbone for many today’s appli-

cations. They come in different forms such as scale-out

file systems, key-value stores, computing frameworks,

synchronization and cluster management services. As

these systems collectively become the “cloud operating

system”, users expect high dependability including per-

formance stability. Unfortunately, the complexity of the

software and environment in which they must run has

outpaced existing testing and debugging tools. Cloud

systems must run at scale with different topologies, exe-

cute complex distributed protocols, face load fluctuations

and a wide range of hardware faults, and serve users with

diverse job characteristics.

One type of important failures is performance fail-

ures, a situation where a system (e.g., Hadoop) does not

deliver the expected performance (e.g., a job takes 10x

longer time than usual). Conversation with cloud en-

gineers reflects that performance stability is often more

important than performance optimization; when perfor-

mance failures happen, users are frustrated, systems

waste and underutilize resources, and long debugging ef-

forts are required to find and fix the problems. Sadly, per-

formance failures are still common; our previous work

shows that 22% of vital issues reported by cloud system

developers relate to performance bugs [12].

In this paper, our focus is to answer the following three

questions: What is the root-cause anatomy of perfor-

mance bugs that appear in cloud systems? What is miss-

ing within the state of the art of detecting performance

bugs? What are new novel directions that can prevent

performance failures to happen in the field?

1.1 Anatomy of Performance Bugs

There exists many reports of performance bugs found

in deployed distributed systems, but most of them are

described in an ad-hoc manner. To dissect root-cause

anatomy of performance failures, we perform an in-depth

study of performance bugs in Hadoop.

Our finding shows that root causes of performance

bugs are complex deployment scenarios that the system

failed to anticipate. From this, we build a root-cause

anatomy (Table 2) that shows some of the scenario types

(e.g., DSR) and specific conditions (e.g., DSR1) that can

happen in deployment. For example, with regards to data

source selection (DSR), some tasks of a job can read

from the same datanode (DSR1) or different datanodes

(DSR2). In terms of data locality (DLC), a task can read

from a local disk or a remote node. Different hardware

faults (FTY) such as slow node or network can occur.

Hardware faults can happen on different places (FPL)

such as data, map, and reduce nodes.

Table 2 forms the basis on which we characterize the

scenario root causes of performance bugs. That is, a per-

formance bug typically appears in a specific scenario.

For example, a performance bug surfaces only when an

original task and the backup task read from the same

slow remote datanode (scenario: DSR1 & FTY1 & FPL1

& DLC1). If one of the conditions is not true, the bug

might not surface.

The anatomy and the example above are sample illus-

trations. The anatomy in Table 2 is far from complete

but it is a first step to characterize performance bugs sys-

tematically. Later in Section 2, we will present more

bug examples and the required scenarios. These exam-

ples point to the fact that performance anomalies are

hard to find and reproduce. Large-scale cloud systems

make many non-deterministic choices (e.g., task place-

ment, data source selection) that depend on deployment

conditions. On top of that, external conditions such as

hardware faults can happen in different forms and places.

The challenge is clear: to unearth performance bugs, we

need to exercise the target system against many possible

deployment scenarios.

1.2 State of the Art

We ask a simple question: Why do performance bugs

keep appearing? Many times similar bugs re-appear (§2).

To answer this, we review literature in distributed sys-

tems that touch issues related to performance bugs. Table

1 shows the summary of the state of the art.

First, many of existing work focus on in-deployment

and post-mortem tracing, monitoring, debugging, and

analysis [2, 4, 9, 10, 22, 23, 26]. Arguably, they rep-

1



Appears in the 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’15)

In/Post-Deployment

Monitoring, Project 5 [2], Magpie [4], Fay [9],

Tracing, X-Trace [10], LagHunter [16], PiP [22],

Profiling Spectroscope [23], Log Mining [26]

Pre-Deployment

Benchmarks YCSB [5], Limpbench [8]

Model FATE [11], Demeter [13], MacePC [17],

checking SAMC [20], MoDist [27]

Formal P Lang [7], CPN [25],

methods DynamoDB+PlusCal [14, 21]

Table 1: Categorization of Related Work.

resent the popular approach but they suffer from one im-

portant limitation: passivity. In-deployment and post-

mortem approaches are passive approaches as they react

after performance bugs surface, but they cannot unearth

performance bugs prior to deployment.

In terms offline performance testing, one of the stan-

dards is running benchmarks [5], which is unfortunately

far from simulating real deployment environments. To

exercise more scenarios, one can simultaneously run

benchmarks and simulate certain environments such as

hardware slowdowns in different places, which we did

in our previous work [8] and it took hours to observe

the result from each experiment (as we must wait to see

the impact). In short, performance benchmarking is time

consuming and has small coverage.

Regarding to exercising deployment scenarios, there

exists many work [13, 27], including ours [11, 15, 20],

that permute certain conditions directly on the target sys-

tem (i.e., “distributed system model checkers”). The

downside here is that they primarily focus on reliability

but not on performance; they are typically specialized to

check classical safety properties. They do not translate

well to time-based performance verification which re-

quires more time to check; applying the same approaches

for performance verification can take weeks to get the re-

sult. MacePC [17] is the closest to our work, but it only

checks systems written in Mace languages and only per-

mutes timings of concurrent events but not other deploy-

ment scenarios such as the ones listed in Table 2.

What we believe missing is fast, pre-deployment de-

tection of performance bugs in distributed systems. One

viable approach is the use of formal modeling tools such

as Colored Petri Nets (CPN) [25], TLA+/PlusCal [18].

Recently, such an approach is used for verifying cloud

systems (e.g., Amazon DynamoDB+PlusCal [14, 21])

but reliability is still the focus (although such tools fit

for performance verification). Another downside is that

models are “hand-made” in practice; developers must

manually model the system logic and scenarios to per-

mute. As an implication, the resulting model may not be

a good representation of the real system.

1.3 System Performance Verifier

The journey to highly dependable cloud systems (includ-

ing performance stability) is ongoing. The use of Plus-

Cal at Amazon hints the need for formal modeling tools

to help verify the ever growing complexity of distributed

systems. The “hand-made” process is however a major

drawback. Therefore, we propose a new advancement:

System Performance Verifier (SPV), a framework that

takes real system code (e.g., Hadoop in Java) and auto-

matically generates the model, environment, and scenar-

ios to permute. The model is based on a modeling tool

of choice (e.g., CPN) that has performance verification

capability.

To the best of our knowledge, our work is the first that

addresses the following question: How to detect perfor-

mance bugs in real distributed systems code and do so

prior to deployment and in a fast and complete man-

ner? There are several challenges to address includ-

ing making the target code amenable for analysis, build-

ing a generic system-to-model compiler (Java-to-CPN in

our case), optimizing the verification process, and many

others (Section 3). Within the last 18 months, we have

addressed many of the challenges. A preliminary eval-

uation of our prototype is given in Section 3.4. In the

next section, we first present more examples of complex

performance bugs to motivate our vision.

2 Deep Performance Bugs

Using our Cloud Bug Study (CBS) database [12], we fur-

ther study performance bugs and select the ones that in-

volve buggy logic unearthed in certain deployment sce-

narios.1 There are 89 performance bugs (in Hadoop,

HBase, and HDFS) that we study carefully, 28 out of

which are found in production, while the rest does not

have a clear indicator. For brevity, we describe some of

the Hadoop performance bugs. We label each bug with

a scenario (e.g., DSR1 & DLC3 & FTY2 & FPL1) repre-

senting the set of conditions (as shown in Table 2) that

must be true to hit the bug. If one of the conditions is not

true, the bug might not surface.

• Untriggered speculative execution. The heart of tail

tolerant systems is speculative execution. When it is

not triggered properly, job performance suffers. We find

numerous cases where speculative execution is not trig-

gered, resulting in significant job slowdowns. For exam-

ple, in our previous work [8], we find several flaws in

Hadoop speculative execution. The first flaw (scenario:

DSR1 & FTY1 & FPL1 & DLC1) is uncovered when an

1The bugs covered here were reported between 2009-2013. We

study the discussions and patches and ignore “easy” performance bugs

(e.g., misuse of Java classes and libraries). The bugs that we cite in this

paper contain hyperlinks (e.g., MR-5533).

2

http://issues.apache.org/jira/browse/MAPREDUCE-5533


Appears in the 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’15)

Scenario Type Possible Conditions

DLC: Data Locality (1) Read from remote disk, (2) read from local disk, ...

DSR: Data Source (1) Some tasks read from same datanode, (2) all tasks read from different datanodes, ...

JCH: Job Characteristic Map-reduce is (1) many-to-all, (2) all-to-many, (3) large fan-in, (4) large fan-out, ...

JSZ: Job Size (1) 1 GB jar file, (2) 1 MB jar file, ...

LSZ: Load Size (1) Thousands of tasks, (2) small number of tasks, ...

FTY: Fault Type (1) Slow node/NIC, (2) Node disconnect/packet drop, (3) Disk error/out of space, (4) Rack switch, ...

FPL: Fault Placement Slowdown fault injection at the (1) source datanode, (2) mapper, (3) reducer, ...

FGR: Fault Granularity (1) Single disk/NIC, (2) single node (deadnode), (3) entire rack (network switch), ...

FTM: Fault Timing (1) During shuffling, (2) during 95% of task completion, ...

TOP: Topology Scenario (1) 30 nodes per rack, (2) 3 nodes per rack, ...

TPL: Task Placement (1) Mappers and reducers are in different nodes, (2) AM and reducers in different nodes, (3) Mappers

are in the same node, (4) Most of reducers placed in the same rack, ...

Table 2: Anatomy of scenario root causes of performance bugs. The table lists scenario types and conditions that

appeared in the 89 performance bugs that we studied.

original task and the backup task read from the same

(DSR1) slow (FTY1 & FPL1) remote (DLC1) datanode.

The second flaw (scenario: JCH1 & TPL1 & FTY1

& FPL2) comes up when all reducers must read from a

mapper (JCH1) remotely (TPL1) and the mapper is slow

(FTY1 & FPL2); because all reducers are slowly pulling

data from the slow mapper, there is “no” straggler. But, if

the scenario changes (e.g., the job is all-to-many; JCH2),

speculative execution is triggered correctly.

In MR-5533 (scenario: FTY2 & FPL3 & TPL2),

progress-status heartbeats from disconnected reducers

(FTY2 & FPL3) do not reach the Application Manager

(AM). Here, AM does not trigger backup tasks. In this

bug, speculative execution is triggered based on the pres-

ence of progress status changes, but not the absence.

The problem of untriggered speculative execution has

appeared since the early days of Hadoop (e.g., MR-562).

• O(n) recovery. When a single failure happens, ideally

the recovery should be O(1), but in unexpected situa-

tions, buggy recovery logic can be O(n) long. For ex-

ample, in MR-5251 (scenario: FTY3 & FPL3 & FTM1),

a reducer receives a disk-out-of-space error (FTY3 &

FPL3) during the shuffling phase (FTM1) and reports it

to AM which incorrectly treats the exception as a con-

nection problem between the mapper and reducer. Here,

AM always “blames” the mapper and runs a new mapper

which will communicate with the out-of-space reducer

again which then repeats the recovery process n times

where n is the configured number of retries.

Another O(n) recovery is in MR-5060 (scenario:

TPL1 & TPL3 & FTY1 & FPL2) where a reducer re-

motely reads (TPL1) from many mappers (e.g., M1..Mn)

that reside in the same node (TPL3). Here, Hadoop only

makes one connection between the reducer and the map

node; the reducer will read from each mapper at a time.

If the map node is extremely slow (FTY1 & FPL2), the

reducer only reports to AM about the flaky mapper (e.g.,

M1) and then continues reading from the next mapper

(e.g., M2), ineffectively serializing the recovery of the

mappers. Recovery is O(n) where n is the maximum

number of mappers that can reside in a node; the number

can be large in high-end nodes.

O(n) recovery dated back to early years of Hadoop.

For example, in MR-1800 (scenario: TPL1 & TPL4 &

FTY4 & TOP1), the mappers and reducers are placed

in different racks (TPL1 & TPL4) with slow inter-rack

switch (FTY4) which Hadoop does not monitor. Hadoop

incorrectly blacklists the map nodes and re-runs the map-

pers in the same mapper rack (due to data locality). The

recovery repeats n times where n is the number nodes

in the mapper rack. Interestingly, the problem is not as

severe if the number of nodes per rack is small (TOP2).

• Long halt from long lock contention. Sometimes cer-

tain operations can be halted unintentionally and must

wait for a “big” lock held by other time-consuming op-

erations. For example, in MR-4749, a job operation is

holding a lock while cleaning up large temporary data

(JSZ1) while another operation from the same job needs

to process a job-commit message. As the commit mes-

sage is not processed, the job completion is delayed until

the background cleaning operation completes.

Similarly, in an earlier bug, MR-1247, a task local-

ization process that downloads big jar files (JSZ1) holds

a lock that prevents the TaskTracker to send heartbeat

messages to the JobTracker. The TaskTracker is con-

sidered dead, and the corresponding tasks are re-run in

another node and hits the same long localization prob-

lem repeatedly. Unintentional long lock contention occa-

sionally appears in Hadoop development (e.g., MR-2209,

MR-2364, MR-4576, MR-4813).

In summary, performance bugs continue to re-appear

with different root causes. There are many more possi-

ble scenarios beyond what we list in Table 2. With the

anatomy, we manage to describe performance bugs sys-

tematically. Our bug descriptions highlight that in order

to catch performance bugs prior to deployment, a wide

3

http://issues.apache.org/jira/browse/MAPREDUCE-5533
http://issues.apache.org/jira/browse/MAPREDUCE-562
http://issues.apache.org/jira/browse/MAPREDUCE-5251
http://issues.apache.org/jira/browse/MAPREDUCE-5060
http://issues.apache.org/jira/browse/MAPREDUCE-1800
http://issues.apache.org/jira/browse/MAPREDUCE-4749
http://issues.apache.org/jira/browse/MAPREDUCE-1247
http://issues.apache.org/jira/browse/MAPREDUCE-2209
http://issues.apache.org/jira/browse/MAPREDUCE-2364
http://issues.apache.org/jira/browse/MAPREDUCE-4576
http://issues.apache.org/jira/browse/MAPREDUCE-4813


Appears in the 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’15)

range of deployment scenarios must be exercised. To do

so with speed and good coverage is a major challenge.

3 Towards a New Solution

The previous sections paint the need for a performance

verification framework that achieves four goals: (1) fast,

(2) complete, covering many possible deployment sce-

narios, (3) runs in pre-deployment, and most impor-

tantly (4) directly checks implementation-level code. To

the best of our knowledge, there is no framework that

achieves all of the four goals.

To further clarify our goals, we are interested in de-

tecting performance failures (e.g., a job takes 5x longer

time to finish than expected) along with their root causes,

which what we imply as “performance verification”. Our

focus is not in finding performance sub-optimizations

(e.g., opportunities to increase job completion time by

10%).

3.1 Formal Modeling Tools

To achieve the first three goals, one promising way is to

adopt formal modeling tools (e.g., CPN, PlusCal). In our

work, we chose Colored Petri Nets (CPN) as it is pop-

ular in the modeling community and brings significant

advantages in performance verification.

First, CPN is generic. One can model almost any sys-

tem with such tools [6, 24] by simply creating “places”,

“transitions”, and “arcs” containing user-defined func-

tions in Standard ML. Most importantly, CPN incorpo-

rates the notion of logical time, allowing us to inject

slowdowns, express the expected performance, measure

the observed performance, and compare the two.

Second, CPN is fast. It executes the model in logical

steps and thus alleviates the cost of setup and cleanup

time in testing real distributed systems (e.g., preparing

input files, bootstrapping nodes) which can take seconds

per experiment [8, 11, 20]. Furthermore, Section 2 high-

lights that many performance bugs surface when there

is some hardware slowdown (“limpware” [8]). In direct

performance testing, slowdown must be injected in wall-

clock time and incurs orders of magnitude longer testing

time. With CPN, slowdown can be simulated in logical

time and the model “moves forward” rapidly.

Finally, CPN is formal. It has a built-in model checker

that can permute all non-deterministic events. We write

assertions (e.g., error if a job takes more than 100 steps)

and CPN can permute all the defined conditions (Table

2). Note that we do not change deterministic policies in

the target code, but whenever some policies use random-

ness, CPN can permute them.

To make sure this is the right adoption, we manu-

ally create CPN models of several protocols (specula-

tive execution, read/write, etc.) that are relevant to sur-

face 18 performance bugs in Hadoop, 2 in HBase, and

2 in HDFS. We then let CPN permute some conditions

such as fault placement (FPL), data source (DSR), and

many others. CPN model checker provides the result (re-

playable paths leading to the assertion violations) in just

less than 5 minutes. This satisfactory result proves that

CPN is powerful enough for our purpose, achieving the

first three goals mentioned above. But now, we must face

the hardest challenge: achieving the 4th goal.

3.2 Challenges

Although formal modeling tools are powerful, there is

little adoption within the systems community. Two

biggest reasons are that developers must build models

manually and the resulting hand-made models do not re-

flect the real complexity of the systems. Thus, to achieve

our 4th goal, we need to build a system-to-model com-

piler that can automatically parse real distributed sys-

tems code including their protocols, states, and com-

munications into checkable models. In our case, we

need to convert systems written in Java to CPN models.

However, these two worlds have different programming

paradigms. There are deep challenges both from the pro-

gramming language as well as the system perspectives.

• Imperative vs. Functional: Java is an imperative lan-

guage while CPN is based on functional language. De-

velopers often write big Java functions as direct changes

to stack and heap are easy. Functional language typi-

cally requires smaller modular functions. This implies

big functions must be re-written into smaller modular

functions for direct parsing.

• Object Oriented vs. Sets: Systems in Java use ob-

jects and a variety of data structures (hash table, list,

etc.). CPN represents data only with multisets (sets

of key-values where the values can also be sets). For

straightforward Java-to-CPN conversion, data represen-

tations should be converted into flat data structures

• By Reference vs. By Value: Java is all about refer-

ences, while CPN does not have the same support. In

CPN, changing states require writing new key-values to

the appropriate set.

• Complex Dataflow vs. Simple Transition: One ma-

jor challenge from the systems side involves complex

dataflows and system constructs such as threads, RPCs,

heartbeats, queues, locks and condition variables. CPN

on the other hand only understands places, transitions,

and arcs. Thus, the compiler must convert high-level sys-

tem constructs into simpler constructs.

• Wall-clock Time vs. Logical Steps: Distributed pro-

tocols operate on wall-clock time (e.g., timeouts), but

CPN works based on logical steps.

Although we specifically discuss Java-to-CPN, we be-

lieve the challenges and our solution are applicable to

many other system-to-model conversions.

4



Appears in the 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’15)

3.3 A Prototype of SPV

We propose System Performance Verifier (SPV), a new

framework that takes real system code (e.g., Hadoop in

Java) and automatically generates the model, environ-

ment, and scenarios to permute. As part of SPV, we have

built SysJava-to-CPN compiler in 5305 lines on top of

WALA [1]. SysJava implies that the target system must

be converted into “SysJava style” as described below. We

do not convert arbitrary Java programs to CPN, which is

hard to achieve and no such tool exists today. Below, we

briefly discuss our high-level methodologies and how we

have addressed many of the aforementioned challenges.

Due to space constraints, we omit the detailed descrip-

tions of how CPN and SPV work.

• SysJava: Our goal is to build a generic compiler that

can take any Java-based distributed systems without a

single change in the compiler. Because of the massive

challenges mentioned in the previous section, the com-

piler cannot simply take vanilla code. Instead, the tar-

get system must be re-structured and annotated into a

“friendlier” code for the compiler. However, we do not

change the program logic. For ease of reference, we

name this “SysJava”. We have created methodologies

to convert Java-based distributed systems into SysJava

style, methodologies such as state annotations, flatten-

ing object-oriented classes to database key-value styles,

code refactoring big functions into CRUD (create-read-

update-delete) functions, and many others. This is the

main effort that developers need to do to integrate SPV.

This process can be potentially simplified if declarative

data-centric languages are adopted in the future [3].

• SysJava-to-CPN compiler: With SysJava programs

ready, the compiler can generate a representative model.

Our compiler will parse data flows, function calls, RPC

calls, threads, user-defined functions, and all other forms

of structures and data communications. For annotated

computations and I/Os, the compiler can add logical time

(e.g., 1 step). The compiler also marks I/Os that can be

delayed and how long (e.g., 20 steps) and treat them as

inputs for the model checker.

• CPN model checker: Checking the generated model

is as simple as clicking a “play button” in CPN. Before

that, we easily setup external configurations such as how

many nodes to run, how many tasks per job, etc.The com-

piler already provides to the model checker the scenario

types and possible values as shown in Table 2.

Just like any other compiler and verification tools, we

note that SPV contains many complex functionalities not

fully described in this paper. The complexity is a must

as we move the burden from the developers (e.g., man-

ual modeling) into SPV which then results in an overall

process that is fast, complete, and automated.

3.4 Preliminary Evaluation

We modified Hadoop MapReduce 1.2.1 in 1067 LOC to

convert it into SysJava style. These changes only involve

speculation-related components such as job tracker, task

tracker, scheduler, and launcher, map and reduce tasks,

along with the message communications. We consider

the changes minimal as we only re-structure the code

but not the logic. Our compiler automatically generates

307 places, 165 transitions, and 733 arcs, collectively

20x larger than our earlier hand-made model. Our SPV

can currently permute TPL (with 8 conditions), DSR (3),

DLC (2), DSR (3), FTY (1), and FPL (1), with a total of

34 scenarios exercised. We run the CPN model checker

with three nodes and one job with two tasks. (In the fu-

ture, we will scale up the evaluation). The model checker

explores 277,847 states and 415,986 arcs and finish with

30 assertion violations that unearth the four performance

bugs we inserted. This process initially ran for 1.5 hour

but we found interesting optimization opportunities that

can significantly reduce the checking time. Overall, SPV

is orders of magnitude faster and more complete than

performance testing with slowdown injections [8].

4 Conclusion

The complexity of cloud distributed systems and their

deployment environments have outpaced existing testing

and debugging tools [12, 19]. The use of formal methods

has become necessary [14], but the gap between real sys-

tems code and hand-made models is still wide. We pro-

pose a research direction that bridges the two worlds. We

have addressed many important challenges and shown a

successful prototype for Hadoop. To show the general-

ity of SPV, we are integrating it into HBase and HDFS.

In this work, we focus on performance bugs, but we be-

lieve SPV can solve many other deep problems such as

distributed deadlock and scheduling problems [12].

5 Acknowledgments

We thank the anonymous reviewers for their tremendous

feedback and comments. This material is based upon

work supported by the NSF (grant Nos. CCF-1321958,

CCF-1336580, and CNS-1350499) and generous sup-

ports from NetApp.

5



Appears in the 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’15)

References
[1] T.J. Watson Libraries for Analysis (WALA). http://wala.

sourceforge.net/wiki/index.php/Main_Page.

[2] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick

Reynolds, and Athicha Muthitacharoen. Performance

Debugging for Distributed Systems of Black Boxes. In

Proceedings of the 19th ACM Symposium on Operating Systems

Principles (SOSP), 2003.

[3] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,

Joseph M. Hellerstein, and Russell C. Sears. BOOM Analytics:

Exploring Data-Centric, Declarative Programming for the

Cloud. In Proceedings of the 2010 EuroSys Conference

(EuroSys), 2010.

[4] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richar

Mortier. Using Magpie for request extraction and workload

modelling. In Proceedings of the 6th Symposium on Operating

Systems Design and Implementation (OSDI), 2004.

[5] Brian Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. Benchmarking Cloud Serving

Systems with YCSB. In Proceedings of the 1st ACM Symposium

on Cloud Computing (SoCC), 2010.

[6] Anna Dedova and Laure Petrucci. From Code to Coloured Petri

Nets: Modelling Guide. In International Workshop on Petri Nets

and Software Engineering (PNSE), 2012.

[7] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer,

Sriram Rajamani, and Damien Zufferey. P: Safe Asynchronous

Event-Driven Programming. http://research.microsoft.

com/pubs/177118/tr.pdf, 2012.

[8] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat

Patana-anake, and Haryadi S. Gunawi. Limplock:

Understanding the Impact of Limpware on Scale-Out Cloud

Systems. In Proceedings of the 4th ACM Symposium on Cloud

Computing (SoCC), 2013.

[9] Ulfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai

Budiu. Fay: Extensible Distributed Tracing from Kernels to

Clusters. In Proceedings of the 23rd ACM Symposium on

Operating Systems Principles (SOSP), 2011.

[10] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker,

and Ion Stoica. X-Trace: A Pervasive Network Tracing

Framework. In Proceedings of the 4th Symposium on Networked

Systems Design and Implementation (NSDI), 2007.

[11] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro,

Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, Koushik Sen, and Dhruba Borthakur. FATE and

DESTINI: A Framework for Cloud Recovery Testing. In

Proceedings of the 8th Symposium on Networked Systems

Design and Implementation (NSDI), 2011.

[12] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn

Leesatapornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry

Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.

Lukman, Vincentius Martin, and Anang Satria. What Bugs Live

in the Cloud? A Study of 3000+ Issues in Cloud Systems. In

Proceedings of the 5th ACM Symposium on Cloud Computing

(SoCC), 2014.

[13] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang,

and Lintao Zhang. Practical Software Model Checking via

Dynamic Interface Reduction. In Proceedings of the 23rd ACM

Symposium on Operating Systems Principles (SOSP), 2011.

[14] James Hamilton. Challenges in Designing at Scale: Formal

Methods in Building Robust Distributed Systems. http://

goo.gl/PBF1VK, 2014.

[15] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. PREFAIL:

A Programmable Tool for Multiple-Failure Injection. In

Proceedings of the 26th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA), 2011.

[16] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. Catch

Me If You Can: Performance Bug Detection in the Wild. In

Proceedings of the 26th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA), 2011.

[17] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud,

James W. Anderson, and Ranjit Jhala. Finding latent

performance bugs in systems implementations. In Proceedings

of the Eighteenth ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2010.

[18] Leslie Lamport. Specifying Systems: The TLA+ Language and

Tools for Hardware and Software Engineers. Addison-Wesley,

2002.

[19] Tanakorn Leesatapornwongsa and Haryadi S. Gunawi. The Case

for Drill-Ready Cloud Computing. In Proceedings of the 5th

ACM Symposium on Cloud Computing (SoCC), 2014.

[20] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi,

Jeffrey F. Lukman, and Haryadi S. Gunawi. SAMC:

Semantic-Aware Model Checking for Fast Discovery of Deep

Bugs in Cloud Systems. In Proceedings of the 11th Symposium

on Operating Systems Design and Implementation (OSDI), 2014.

[21] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu,

Marc Brooker, and Michael Deardeuff. Use of Formal Methods

at Amazon Web Services. http://research.microsoft.

com/en-us/um/people/lamport/tla/

formal-methods-amazon.pdf, 2014.

[22] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.

Shah, Charles Killian, and Amin Vahdat. Pip: Detecting the

unexpected in distributed systems. In Proceedings of the 3rd

Symposium on Networked Systems Design and Implementation

(NSDI), 2006.

[23] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie

Krevat, Spencer Whitman, Michael Stroucken, William Wang,

Lianghong Xu, and Gregory R. Ganger. Diagnosing

Performance Changes by Comparing Request Flows. In

Proceedings of the 8th Symposium on Networked Systems

Design and Implementation (NSDI), 2011.

[24] Yin Wang, Terence Kelly, Manjunath Kudlur, Stephane

Lafortune, and Scott Mahlke. Gadara: Dynamic Deadlock

Avoidance for Multithreaded Programs. In Proceedings of the

8th Symposium on Operating Systems Design and

Implementation (OSDI), 2008.

[25] Michael Westergaard. Verifying Parallel Algorithms and

Programs Using Coloured Petri Nets, 2012.

[26] Wei Xu, Ling Huang, Armando Fox, David Patterson, and

Michael Jordan. Detecting Large-Scale System Problem

Detection by Mining Console Logs. In Proceedings of the 22nd

ACM Symposium on Operating Systems Principles (SOSP),

2009.

[27] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng

Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and

Lidong Zhou. MODIST: Transparent Model Checking of

Unmodified Distributed Systems. In Proceedings of the 6th

Symposium on Networked Systems Design and Implementation

(NSDI), 2009.

6

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://research.microsoft.com/pubs/177118/tr.pdf
http://research.microsoft.com/pubs/177118/tr.pdf
http://goo.gl/PBF1VK
http://goo.gl/PBF1VK
http://research.microsoft.com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf
http://research.microsoft.com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf
http://research.microsoft.com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf


Appears in the 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’15)

A Discussion Topics

for the Workshop

Below are the discussion points that we hope to bring up

at the workshop:

• Is it time for pre-deployment detection of perfor-

mance bugs? For decades, the state of the art of de-

bugging distributed systems performance is by tracing,

monitoring and post-mortem analysis. As distributed

systems become the backbone of cloud computing, is it

time to find revolutionary approaches that find the prob-

lems prior to deployment? Is it a big priority for cloud

practitioners? Is performance stability as important as

availability?

• Bridging systems code and formal methods. Are

cloud engineers and practitioners willing to adopt formal

methods for verifying performance stability? The Ama-

zon DynamoDB team clearly spent deep efforts in adopt-

ing PlusCal [14]; it is important because their database

is the core of many Amazon services. Are other cloud

architects willing to do the same? Is our approach attrac-

tive? Is more research in this space needed, where we

bridge the big gap between the two worlds of real sys-

tems code and formal methods?

• Future of data-centric languages. A key to make our

approach simple is if the target systems are written in

data-centric languages (e.g., [3]). What do cloud prac-

titioners see in terms of the future of data-centric lan-

guages?

• Beyond Hadoop. Distributed systems are not just

about Hadoop. Many people build their own distributed

services on top of resources in private and public clouds.

In addition, with more “software” in the networking area

(e.g., SDN), we believe the concept of finding perfor-

mance bugs in distributed systems will be widely appli-

cable beyond Big Data systems.

• Root Cause Anatomy of Performance Bugs. We be-

lieve we have successfully created a structured anatomy

of root causes behind performance bugs. Some are de-

picted in Table 2. We would like to hear more inter-

esting anecdotes from cloud practitioners whether such

anatomy is useful.

• Beyond Performance Bugs. What kind of other com-

plex distributed system bugs that can be detected by ex-

tending SPV?

7


