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Abstract

With the advent of cloud computing, thousands of ma-
chines are connected and managed collectively. This era
is confronted with a new challenge: performance vari-
ability, primarily caused by large-scale management is-
sues such as hardware failures, software bugs, and con-
figuration mistakes. In this paper, we highlight one over-
looked cause: limping hardware – hardware whose per-
formance degrades significantly compared to its specifi-
cation. We present numerous cases of limping disks, net-
work and processors seen in production, along with the
negative impacts of such failures on existing large-scale
distributed systems. From these findings, we advocate
the concept of limping-hardware tolerant clouds.

1 Introduction

The success of cloud computing can be summarized with
three supporting trends: the incredible growth of hard-
ware performance and capacity (“big pipes”), the con-
tinuous success of software architects in building scal-
able distributed systems on thousands of big pipes, and
the “Big Data” collected and analyzed at massive scale
in a broad range of application areas. These success
trends nevertheless bring a growing challenge: to ensure
big data continuously flows in big pipes, distributed sys-
tems must deal with all kinds of failures, including hard-
ware failures, software bugs, administrator mistakes, and
many others. These failures lead toperformance vari-
ability, which is considered a big “nuisance” in large-
scale system management. Recent work has addressed
many sources of performance variability such as hetero-
geneous systems [26, 41], unbalanced resource alloca-
tion [25, 36, 39], software bugs [29], configuration mis-
takes [20] and straggling tasks [18, 22].

In this paper, we highlight one overlooked cause of
performance variability:limping hardware– hardware
whose performance degrades significantly compared to
its specification. The growing complexity of technol-
ogy scaling, manufacturing, design logic, usage, and op-
erating environment increases the occurrence of limp-
ing hardware. We believe this trend will continue, and
the concept of performance perfect hardware no longer
holds. Therefore, we advocate that limping hardware

should be considered as a new and important failure
mode that future distributed systems should deal with. To
corroborate this conjecture, we raise the following ques-
tions: What are the cases of limping hardware observed
in production? What are the impacts on deployed sys-
tems? What are the design flaws? How should future
generation systems manage limping hardware?

To address these questions, we first collected reports
and anecdotes on cases of limping hardware, along with
the root causes and negative impacts on applications and
users (Section2). We find that disk bandwidth can drop
by 80%, network throughput by two orders of magnitude,
and processor speed by 25%. Interestingly, such limping
behavior is exhibited by both commodity as well as en-
terprise hardware. The anecdotes also indicate that un-
managed limping hardware can lead to cascades of per-
formance failures across system components. For exam-
ple, a limping network card can cause a chain reaction
upstream and “cripple” the whole cluster [14, 16].

To further substantiate our conjecture, we performed
a study of issues reported by developers of open-source
scale-out systems such as Hadoop, HDFS, HBase, Cas-
sandra, and ZooKeeper (Section3). We manually re-
viewed 573 issues that pertain to failures in general, 53
out of which describe the systems’ inability to deal with
performance failures caused by increased load and de-
graded hardware. From this study, we are able to high-
light some design flaws that underlie why these systems
are limping-hardware intolerant. For example, a single
thread/queue is often used to perform multiple operations
of different types, and if one operation/queue element is
affected by a limping hardware (e.g., slow access to a
limping disk), all other operations will be affected (e.g.,
blocked heartbeats).

We hypothesized that many subcomponents of these
systems are perhaps still limping-hardware intolerant.
To confirm this, we built LATE (Limping-failure Anal-
ysis and TEsting framework) to rigorously analyze sev-
eral scale-out systems against limping I/Os (Section4).
As expected, we unearthed more issues, among which
is the grave absence of limping-hardware detection and
failover recovery. For example, in HDFS, a data trans-
fer can limp to 1 KB/s without triggering a failover. We
also found that the Hadoop speculative execution does
not work in dealing with limping hardware.

1



Appears in the 5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’13)

Overall, we conclude that although today’s scale-out
systems employ redundancies, they are not capable of
making limping hardware “fail in place”. Users, ad-
ministrators, and developers often use laborious time-
consuming ad-hoc methods to pinpoint and replace limp-
ing hardware. As a result, performance failures cascade,
productivity is reduced, and energy is wasted. This leads
us to introduce the concept of limping-hardware tolerant
clouds in which scale-out systems can properly antici-
pate, detect, recover, and utilize various cases of limping
hardware, isolating the negative implications from user
applications (Section5).

We note that the purpose of this paper is not to pro-
pose a specific solution, but simply to raise awareness of
limping hardware, show the negative impacts on existing
scale-out systems, and discuss open challenges and new
research directions in building limping-hardware tolerant
clouds. The following sections describe in detail the con-
tributions of this paper that we have summarized above.

2 Cases of Limping Hardware

To the best of our knowledge, there is no public large-
scale data on limping hardware. Nevertheless, we have
collected many reports and anecdotes from practitioners,
which include cases of limping disks, network, proces-
sors, and memory, along with the root causes and nega-
tive impacts on applications and users.

Limping Disks: Due to the complex mechanical nature
of disk drives, disk components wear out and exhibit per-
formance failure. For example, a disk can have aweak
headwhich could reduce read/write bandwidth to the af-
fected platter by 80% or introduce more than 1 second
latency on every I/O, while access speed to other healthy
platters is not affected [1]. Mechanical spinning disks
are not immune tovibration which can originate from
bad disk drive packaging, missing screws, constant “nag-
ging noise” of data centers, broken cooling fans, and
earthquakes, potentially decreasing disk bandwidth by
10-66% [24, 28]. The disk stack also includes complex
controller code that can containfirmware bugsthat de-
grade performance over time [35]. Finally, as disks per-
form automaticbad sector remapping, a large number of
sector errors will impose more seek cost.

Beyond the reports above, we also hear anecdotes
from practitioners. For example, media failures can force
disks to re-read each block multiple times before re-
sponding [15], and a set of disk volumes incurred a wait
time as high as 103 seconds, uncorrected for 50 days,
affecting the overall I/O performance [17].

Limping Network: A broken module/adaptercan in-
crease I/O latency significantly. For example, a bad Fibre

Channel passthrough module of a busy VM server can in-
crease user-perceived network latency by ten times [13].
A broken adapter can lose or corrupt packets, forcing the
firmware to performerror correctingwhich could slow
down all connected machines. As a prime example, In-
trepid Blue Gene/P administrators found a bad batch of
optical transceivers that experienced a high error rate,
collapsing throughput from 7 Gbps to just 2 Kbps; as
the failure was not isolated, the affected cluster ceased to
work [16]. A similar collapse was experienced at Face-
book, but due to a different cause: the engineers found
network driver bugsin the Linux stack that made a 1-
Gbps NIC card transmit only at 1 Kbps, causing a chain
reaction upstream that slowed down the entire 100-node
cluster [14]. Finally, switches and routers can also expe-
riencepower fluctuationsthat degrade performance [23].

Limping Processors and Memory: Changes insili-
con technology scalingand scaling operating voltages
to near-thresholdfor energy efficiency will produce
hardware with high failure rates and variable perfor-
mance [21]. Processor and memory degradation can also
be attributed toaging transistors, and might require new
solutions at the architecture or system level. Poorly de-
signed thermals, fan failures, obstructions to airflow, and
challenging workload mix can lead tooverheatedpro-
cessors and memory, which can cause bandwidth throt-
tling [32]. Finally, manufacturing variation in leakage
and compensating power capping can produce as much
as 26% variation in deployed systems [37].

Summary: These stories reaffirm the existence (per-
haps non-rare) of limping hardware and the fact that
hardware performance failures are not hidden at the de-
vice level but are exposed to applications. This moti-
vates us to evaluate how today’s systems deal with limp-
ing hardware. Do deployed systems have limping re-
siliency mechanisms? What is the system-level impact
of a degraded hardware? Answers to these questions are
paramount in building limping-hardware tolerant clouds.

3 Study of Bug/Issue Reports

To address the questions above, we performed a study
of hundreds of issues reported by developers of scale-
out systems such as Hadoop, HDFS, Cassandra, HBase,
and ZooKeeper, and filtered 53 issues that describe the
systems’ inability to deal with performance variability
caused by increased load and degraded hardware. Note
that we include problems related to increased load be-
cause a normal load running on a limping hardware will
lead to an increased load. We present some of our in-
teresting findings in two forms: (1) the system-level im-
pacts of limping hardware and (2) the lessons learned.
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Figure 1: Limping impacts. The x-axis shows our three tests.

The y-axis shows the execution slowdown when a node’s network link

is degraded to 10, 1, and 0.1 Mbps. To illustrate the speed of fail-stop

failover, we also crashed a node during the tests. Here, the latencies

are only slightly affected (the “crash” bars). However, we observe

no failover for limping cases; the slow node is not isolated and thus

cripples the whole tests. The HBase test failed on 0.1 Mbps link.

System-level impacts: Applications canhangor crash;
a limping hardware can make application worker queues
grow without bounds, run out of threads, or throw an out-
of-memory exception [8, 12]. Nodes can beincorrectly
declared dead; a limping storage or network link can de-
lay heartbeat delivery from a slave node to the master
node [7]. Worse, unhandled limping failures can lead
to cross-node cascading effects; slow writes to on-disk
transaction logs can cripple the node’s ability to process
incoming RPCs from clients and other nodes [11]; a full
queue can overflow other nodes’ queues, disabling com-
munications across nodes [5]; and slow tasks can make
bad long tails that slow down the entire cluster [6]. Cas-
cading effects and bottlenecks in turn can causeresource
underutilization[3]. Finally, limping servers can experi-
encesevere overload; clients or other nodes obliviously
flood a limping node with retries [9, 10], and a temporary
limping server that has recovered must suddenly serve
many jobs that have been queued up during the slow-
down [4]. In addition, heavy background jobs that are
oblivious to limping hardware can also cause overload.

Lessons Learned/Design Flaws: We were able to high-
light some design flaws that underlie why these systems
are limping-hardware intolerant. Developers often use a
multi-purpose thread; a single thread can perform mul-
tiple operations of different types, and if one operation
is affected by a limping hardware (e.g., volume scan),
all other operations will be affected (e.g., blocked heart-
beats). Similarly, amulti-purpose queueis often used; a
node uses one queue to communicate to all other nodes,
and hence a limping communication between a pair of
nodes can make the single queue full, disabling com-
munication with other nodes. Limpingdetection and
failover recoveryare absent; tasks continue to run very
slowly rather than being migrated, or a limping compo-
nent is given the same amount of job as in the normal

case. With no limping signals, clients or peers willretry
rather than throttlefailed operations, flooding the limp-
ing component with more load. Finally, there isno back-
pressure; as requests flow across queues, one full queue
backlogs other queues, and unbounded queues can grow
infinitely, thereby overcommitting memory.

Summary: This study highlights several limping-
intolerant designs. We find that new fixes are often ap-
plied to solve particular issues, and therefore we sense
that many subcomponents of these systems are perhaps
still limping intolerant. We confirm this hypothesis with
a limping-failure analysis which we present next.

4 Limping-Failure Analysis

Our findings above motivate us to build LATE (Limping-
failure Analysis and TEsting framework) which involves
running real implementations, emulating limping hard-
ware (e.g., reducing network and disk throughputs), ob-
serving the system-wide impacts, and unearthing design
flaws. We integrate LATE to our target systems (Hadoop,
HDFS, and HBase) and perform macro and micro anal-
ysis. In macro analysis, we run benchmarks and inject
coarse-grained limping failures (e.g., a slow link). In mi-
cro analysis, we run specific protocols of the systems to
exercise more code paths and inject unique limping I/Os
observed in traversed paths. Due to space limitations, we
do not explain the framework further, but rather present
our findings of limping-intolerant designs (beyond what
we have found manually from the bug study).

Macro analysis: We ran distributed workloads on sev-
eral scale-out systems (e.g., wordcount on Hadoop) run-
ning on five nodes. We emulate a limping local net-
work card by introducing a slow link on one node. Fig-
ure1 shows the severe implication: the execution time of
all the workloads are increased by orders of magnitude.
None of the systems are capable of detecting and recov-
ering from the limping node. Although these systems are
fail-stop tolerant, they are not limping-hardware tolerant.

We now turn our attention to the surprising result from
the Hadoop test; we expected that the MapReduce spec-
ulative execution would rerun limping tasks on other
healthy nodes. After in-depth analysis, we made two in-
teresting observations. First, a mapper can run on a node
with a slow link without being marked a straggler. This
is because input and output files of a mapper are typi-
cally local files, and thus the slow link does not affect
the mapper. However, when all reducers of the same job
need to fetch the mapper’s output through the slow link,
all of the reducers progress at the same slow rate. The
speculator is not triggered because a task is rerun only if
it makes little progress relative to others of the same job.
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Second, Hadoop depends on HDFS whose write pro-
tocol is not immune to limping I/Os. In HDFS, a large
chunk of data is transferred in 64-KB packets, and a
timeout is only thrown in the absence of a packet re-
sponse for 60 seconds. This implies that a disk or net-
work link can limp to almost 1 KB/s without trigger-
ing a failover in the write pipeline (as illustrated in the
HDFS test in Figure1). This has a negative implication
to Hadoop. If all reducers of a job write their outputs
to HDFS files that have a replica on a node with a slow
link/disk, thenall of the reducers will slow down without
triggering the speculative execution.

Micro analysis: Our micro analysis reveals that existing
timeouts are for fail-stop, but not limping failures. Typ-
ically, a timeout is triggered in the complete absence of
a response for a long period. However, a limping hard-
ware makes operations respond slowly (e.g., the HDFS
example above). We also found cases ofwrong detec-
tion of limping node (e.g., a normal node is marked dead
in a slow multi-node pipeline),unexploited parallelism
(e.g., big data I/Os run in parallel, but small paralleliz-
able transactional I/Os run sequentially), andlong lock
contention(e.g., locks are sometimes held under limping
I/Os, causing other operations to block for a long time).

Cases found from this analysis could happen in real
deployment. Indeed, such is the case of the long lock
contention problem. Intrepid administrators discovered
that a limping optical transceiver caused GPFS opera-
tions on the affected node to hold tokens and locks for a
long period of time. The failure cascaded, and after an
hour, the whole GPFS cluster was in live-lock [16].

5 Limping-HW Tolerant Clouds

It is evident that the case studies presented throughout
this paper demand a new era of limping-hardware tol-
erant clouds. In this section, we discuss open chal-
lenges and new research directions in building such sys-
tems. We categorize the discussion into four subprinci-
ples: limping-hardware anticipation, detection, recovery,
and utilization. We note that since this is an ongoing
project, we do not propose a specific solution.

Anticipation: Limping-hardware anticipation requires
limping-tolerant design patterns; every data structure and
algorithm employed should take into account limping
cases such that performance failures do not cascade. For
example, developers can enforce the idea ofdecoupled
queues/threadswhere every queue/thread handles a dif-
ferent type of operation (e.g., client RPC, disk writes).
One can also exploredestination-proportional queuesto
ensure that messages directed to a limping destination
do not fully occupy a bounded queue. We believe that

when every data structure/algorithm is scrutinized, more
limping-tolerant design patterns will emerge.

Developers may also want to quickly verify the ab-
sence of limping-intolerant design flaws in current and
future versions. Our limping testing framework (§4) is
not always a suitable option due to the time-consuming
process of delaying I/Os. Therefore, we are building a
limping static analysis, a new methodology that formally
expresses “limping-tolerant rules” and performs rapid
static analysis to find violations of the rules. Specif-
ically, given a scale-out system, the tool abstracts out
system-level constructs affected by limping failures (e.g.,
queues, timeouts, threads, message handlers, locks) and
then runs program analysis to search for rule violations
such as missing timeouts, long lock contention, the use of
multi-purpose queue/thread, and many other violations.
While recent work advances static analysis by finding
performance bugs [29], here we do so by focusing on
limping-related bugs.

Detection: Limping-hardware detection must be accu-
rate, fine-grained, and efficient. Accurate detection is
fundamental for proper recovery. Imagine a limping-
hardware induced slowdown that is incorrectly detected
as overload-induced. In such case, an overload recov-
ery might react (incorrectly) by throttling or reducing the
workload, while a proper reaction is to identify and iso-
late the limping hardware. Fine-grained detection must
be able to pinpoint the offending hardware (e.g., pin-
pointing a limping disk as opposed to marking the node
down). Finally, efficient detection should not impose ex-
cessive monitoring overhead.

To this end, we propose a distributed limping-
hardware detection that synthesizes peer comparison,
sampling, root-cause analysis; peer-comparison exposes
a limping component from its peers, sampling reduces
monitoring overhead, and root-cause analysis pinpoints
the source of performance anomalies. We also propose
methods that unearth implicit events from explicit events;
fortunately many limping behaviors can be attributed to
certain explicit causes. For example, a slow disk (im-
plicit) can be caused by many sector remappings (ex-
plicit). Here, rather than having full-blown monitoring,
one can only record explicit operations that can lead to
limping behavior.

Recovery: While anticipation is about design patterns,
recovery is about mechanisms and policies that manage
limping hardware and allow them to “fail in place”. For
example, how to utilize nodes with limping disks for in-
memory computation only? How to distribute computa-
tions across racks connected by a limping switch? How
to differentiate recovery of transient vs. permanent limp-
ing hardware? How to move computation from a limping
processor to a healthy one? In this context, distributed
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systems might collaborate with operating systems in ex-
changing information about local hardware states. For
non-local hardware such as network switches, the use of
Software-Defined Networking (SDN) such as the Open-
Flow framework should be explored.

Utilization: The fail-stop principle distinguishes only
two failure modes (fail or working), and failed compo-
nents cannot be used. In contrary, limping hardware in-
troduces more complex failure modes; a hardware can
slow down by just 1% or worse 50%. Different slow-
downs might be handled differently, and hence limping
hardware might still be usable in different ways depend-
ing on the domain. For example, rarely-accessed files
can be put on a slow disk. Therefore limping-hardware
utilization policies should also be developed.

6 Related Work

Recent work provides rich analysis of various hardware
failures including machine crashes, disk failures, and
memory corruption. “Formal” studies of these failures
(e.g., [33, 38]) were undertaken after anecdotes started
to circulate. We argue that studies of limping hardware
are greatly needed.

Distributed jobs have to deal with performance vari-
ability originating from stragglers, jitters, and heteroge-
neous hardware. Stragglers are mostly detected at the
task level [22], which suffers from the limitations we de-
scribed in Section4. Jitters are often transient and spo-
radic in nature [42], while limping hardware could be
both transient and permanent. Systems that deal with
heterogeneous components typically track performance
variations at levels above the hardware (e.g., VM [ 26],
request/RPC [34], or task level [41]). In other related
work [31], hardware heterogeneity is expected and speci-
fied a priori, while limping hardware exhibits unexpected
variability. Overall, most existing workreacts to per-
formance variability but, to the best of our knowledge,
nonemanageslimping hardware (e.g., tracking and iso-
lating/utilizing).

Big data should flow in big pipes, but design
flaws could introduce bottlenecks which lead to “small
pipes” [27, 40]. In this context, our work unearths
limping-intolerant designs in existing scale-out systems.
Previous work on perturbation [30] only performed
black-box analysis where code-debugging is a non goal,
and hence did not unearth deep design flaws. In con-
trast, our ultimate goal is to learn from current design
flaws and develop limping tolerant principles. Finally,
the concept of hardware performance failure has been
introduced before [19], however there was no in-depth
study of the impact on existing systems.

7 Conclusion

New failure modes always dramatically transform sys-
tems design and implementation. Reports and anecdotes
from large-scale system deployments have built the case
that an important failure mode has emerged. Limping
hardware without doubt is a destructive failure mode.
Yet, current systems fail to properly manage limping
hardware, and thus performance failures often cascade.
It is our hope that this paper provides a strong motiva-
tion for the cloud community to discuss more challenges
and new research directions in building future generation
limping-hardware tolerant clouds.
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