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Abstract

We present SCALECHECK, an approach for discovering

scalability bugs (a new class of bug in large storage systems)

and for democratizing large-scale testing. SCALECHECK

employs a program analysis technique, for finding potential

causes of scalability bugs, and a series of colocation tech-

niques, for testing implementation code at real scales but

doing so on just a commodity PC. SCALECHECK has been

integrated to several large-scale storage systems, Cassan-

dra, HDFS, Riak, and Voldemort, and successfully exposed

known and unknown scalability bugs, up to 512-node scale

on a 16-core PC.

1 Introduction

Being a critical backend of many today’s applications and

services, storage systems must be highly reliable. Decades

of research address a variety of storage dependability issues,

including availability [44, 55], consistency [41, 77], durabil-

ity [51, 72], integrity [36, 56], security [53, 71], and reliabil-

ity [73, 74].

The dependability challenge grows as storage systems

continue to scale in large distributed manners, especially in

the last couple of years where the field witnesses a phenome-

nal deployment scale; Netflix runs tens of 500-node Cassan-

dra clusters [34], Apple deploys a total of 100,000 Cassandra

nodes [2], Yahoo! revealed the largest Hadoop/HDFS clus-

ter with 4500 nodes [35], and Cloudera’s customers deploy

Spark on 1000 nodes [24, 27].

Is scale a friend or a foe [68]? On the positive side, scale

surpasses the limit of a single machine in meeting increasing

demands of compute and storage. On the negative side, this

new era of “cloud-scale” storage systems has given birth to

a new class of bug, scalability bugs, as defined in Figure 1.

From our in-depth study of scalability bugs (§2), we iden-

tified two challenges. First, scalability bugs are not easy to

discover; their symptoms only surface in large deployment

scales (e.g.,N>100 nodes). Protocol algorithms might seem

scalable in design sketch, but until real deployment takes

place, some bugs remain unforeseen (i.e., there are specific
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Scalability bugs: Latent bugs that are

scale dependent, whose symptoms surface

in large-scale deployments (e.g., N>100
nodes), but not necessarily in small/medium-

scale (e.g., N<100) deployments.

Examples:

“obvious symptom in 1000 nodes” [Cassandra bug #6127],

“with >500 nodes, ... trouble” [# 6409];

“16800 maps [recovery] was slow” [Hadoop #3711],

“1900 nodes, [namenode’s] queue overflowed” [#4061];

“with >200 nodes, it doesn’t work” [HBase #12139].

Figure 1: Scalability bugs. Definition and quotes from scala-

bility bug reports. Detailed examples are in §2a and §5.1.

implementation choices whose impacts at scale are unpre-

dictable). Last but not least, their root causes are often hid-

den in the rarely tested background and operations protocols.

Second, the common practice of debugging scalability

bugs is arduous, slow and expensive. For example, when

customers report scalability issues, the developers might not

have direct access to the same cluster scale and must wait for

a “higher-level” budget approval for using large test clusters.

As it stands today, many developers are heavily reliant on

test clusters operated by large companies to do scale testing

and only accessible to expert developers [26].

These realities raise the following question: how to dis-

cover latent scalability bugs and democratize large-scale test-

ing? To this end, we introduce SCALECHECK, a concept

that emphasizes the need to scale-check distributed system

implementations at real scales, but do so cheaply on just

one machine, hence empowering more developers to perform

large-scale testing and debugging.

We design SCALECHECK with two components (SFIND

and STEST) to address the two challenges. First, to reveal

hidden scalability bugs, we build SFIND, a program analy-

sis support for finding “scale-dependent loops.” This strat-

egy is based on our findings that the common root cause of

scalability bugs is loops that iterate on data structures that

grow as the system scales out (e.g., an O(N3) loop that

iterates through lists of node descriptors). Such loops can

span across multiple functions and classes and iterate a va-



riety of data structures, hence the need for an automated ap-

proach. With SFIND output, developers can setup the nec-

essary workloads that will exercise the loops and reveal any

potential impacts to performance or availability.

Next, to democratize large-scale testing, we build STEST,

a single-machine scale-testing framework. We target one

machine because arguably the most popular testing practice

is via unittests, which only requires a PC. Developers already

invest a significant effort on unittests; their LOC can reach

20% of the system’s code itself. However, current distributed

systems and their unittests are not built with single-machine

scale-testing in mind. For example, naively packing nodes as

processes/VMs onto one machine quickly hits a colocation

limit of 50 nodes/machine and we found no way to achieve

a high colocation factor with black-box methods (no target

system modification). Thus, we introduce novel colocation

techniques such as global-event driven architecture (GEDA)

in single-process cluster and processing illusion (PIL) with

non-intrusive modification.

To show the generality and effectiveness of

SCALECHECK, we have integrated SCALECHECK to a

variety of large-scale storage systems, Cassandra [58],

HDFS [18], Riak [30], and Voldemort [29], across a total

of 15 earlier and newer releases. We scale-checked a total

of 18 protocols (bootstrap, rebalance, add/decommission

nodes, etc.), reproduced 10 known bugs and discovered 4

unknown critical scalability bugs (in Cassandra and HDFS).

By only modifying the target systems in 179 to 918 LOC

(and with a generic STEST library), we can colocate up to

512 nodes on a 16-core 32-GB commodity PC with high

result accuracy (i.e., observe a similar behavior as in the

real-scale deployment).

SCALECHECK is unique compared to related work. For

example, scalability simulation [39, 57] only checks mod-

els, but SCALECHECK checks implementation code. Ex-

trapolation from “mini clusters” [57, 75, 80] does not work

if the bug symptoms do not surface in small deployments,

but SCALECHECK checks at real scales. Finally, emula-

tion “tricks” run implementation code at real scale but in a

smaller emulated environment [10, 48, 78] (the same cate-

gory SCALECHECK can be put in), however existing tech-

niques have limitations such as not addressing CPU con-

tention and not finding potential causes automatically (more

in §7). We also acknowledge many other works in improv-

ing storage scalability [42, 70], while our work emphasizes

on scalability faults.

In summary, scalability bugs are new-generation bugs to

combat in modern cloud-scale storage. Finding them with-

out dependence of large clusters is a new research area to

explore. In fact, this problem was discussed in a recent large

meeting of Hadoop committee [26]. Currently, many new

features in the alpha releases of Hadoop/HDFS still “sit on

the shelf,” i.e., it is hard to test alpha (or even beta) releases

at real scales as large production systems are not always ac-
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    O(N3)
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Figure 2: An example bug (Section 2a). (a) Every second

every node gossips to its peers its ring view and version number

(e.g., Y gossiped up to version Y9), (b) the receiving node (e.g., X)

executes “f()” to synchronize the view, (c) when N is large, this

O(N3) scale-dependent process creates a backlog of new gossips,

(d) thus X keeps gossiping only the latest (old) versions (e.g., Y1),

(e) as Y ’s recent gossips are not propagated on time, other nodes

(e.g., Z) mark Y as dead.

cessible for testing. Some new features are still pushed and

deployed but without much confidence. With this unideal re-

ality, the committee agrees on the need for this new research,

that it will increase their confidence on new releases [26].

Some companies began to invest in building scale-testing

frameworks. For example, LinkedIn just released their scale-

testing framework this year [9, 10] but it only emulates stor-

age space specifically for HDFS.

For interested readers, we provide a supplemental file [1].

In the following sections, we present an extended motiva-

tion (§2), SCALECHECK design, application and implemen-

tation, and evaluation (§3-5) discussion, related work, and

conclusion (§6-8).

2 Scalability Bugs

Scalability bugs are not a well-understood problem. To the

best of our knowledge, we provide the first in-depth look at

scalability bugs in scale-out systems.

(a) What is an example of scalability bugs? In Cas-

sandra issue #c6127 in Figure 2 [7], the bug surfaced when

bootstrapping a large cluster. Here, every node receives gos-

sips from peer nodes (with their ring views), then find any

difference to synchronize their views of the ring. The root

cause is that during bootstrapping with many view changes,

the gossip processing is scale-dependent, O(N3), as it iter-

ates through the node’s and peer’s ring data structures and

uses a list-copy mechanism. When N is large, this CPU-

intensive process creates a backlog of new gossips, hence

many nodes are inadvertently declared dead (and then alive

after the gossips arrive). This repeating process leads to a

cluster instability with thousands of “flappings” as N grows;

a “flap” is when a node marks a peer as down and alive again.

More detailed examples are presented in §5.1.

(b) Do they exist in many scalable systems? We have

collected a total of 55 bugs in many modern distributed

systems (13 in Cassandra, 5 in Couchbase, 6 in Hadoop,

13 in HBase, 16 in HDFS, 1 in Riak, and 1 in Voldemort).

This is an arduous process due to the lack of searchable key-

words for “scalability bugs”; we might have missed some

other bugs. We post the full list in Section 2 of [1]. All

the bugs were reported from large deployments (100-1900

http://issues.apache.org/jira/browse/CASSANDRA-6127


nodes). We emphasize again that all these bugs can only be

reproduced at scale.

(c) What are the root causes? We study the buggy code,

patches, and developer discussions and find that the majority

(52) of the bugs are caused by scale-dependent loops, which

iterate scale-dependent data structures (e.g., list of nodes);

the rest is about logic bugs that can be caught with single-

function testing. We break them down to three categories:

(1) CPU-intensive loops (15 bugs); Figure 2 shows an exam-

ple. (2) Disk IO loops (26 bugs); the pattern is similar to

Figure 2 but the nested-loops contain disk IOs. (3) Locking-

related loops (11 bugs); they can be in the form of locks in-

side the loops or vice versa. These patterns suggest that this

problem lends itself to program analysis (§3.1).

(d) Where are they located? The bugs are within the

user-facing read/write calls (12 bugs) and operational proto-

cols (40 bugs) such as block report, bootstrap, consistency

repair, decommission, de-replication, distributed fsck, heart-

beat, job recovery, log cleaning, rebalance, and region as-

signment. This suggests that scalability correctness is not

merely about the user-facing paths. Large systems are full of

operational paths that must be scale-tested as well.

(e) When do they happen? User-facing read/write proto-

cols run “all the time” in deployment, hence are continuously

tested. Operational protocols, however, are not frequently

exercised. In a stable-looking cluster, scalability bugs can

linger silently until the buggy operational protocols are trig-

gered (akin to buggy error handling). For the bugs in user-

facing calls, most were triggered by unique workloads such

as large deletions or writes after decommission.

(f) How do scalability bugs impact users? Scalability

bugs can cause both performance and availability problems.

Although many of the bugs are in the operational protocols,

they can cascade to user-visible impacts. For example, when

nodes are incorrectly declared dead, some data become un-

reachable; or scale-dependent operations in the master node

(e.g., in HDFS) can cause global lock contention, hence

longer time to process user read/write requests.

(g) Why were the bugs not found before? First, the

workloads and the necessary scales to cover the buggy pro-

tocols are not captured in the unittests as creating a scal-

able test platform is not straightforward [26]. Second, pro-

tocols might be scalable in design, but not in practice. Re-

lated to c6127 (Figure 2), the failure detector/gossiper [50]

was adopted for its “scalable” design [58]. However, the de-

sign does not account for the gossip processing time during

bootstrap/cluster-changes, which can be long, and the sub-

sequent backlogs. To debug, the developers tried to “do

the [simple] math” but failed [7]. Specific implementa-

tion choices such as overloading gossips with many other

purposes (e.g., announcing boot/rebalance changes) deviate

from the original design sketch, hence the need for scale-

testing the implementation code at real scales.

applyStateLocally (epStateMap) 

   for (e : epStateMap)  

      if (!localStateMap.get(e.key))

         handleChange(ep, e.val); 

handleChange (ep, epState) 

   for (subscriber : subscribers)

      subscriber.onJoin(ep, epState); 

onJoin (ep, epState) 

   for (e : epState)

      onChange (ep, e.key, e.val); 

onChange (ep, state, val) 

   if (state == STATUS)

      if (val.val[0] == NORMAL)

         handleNormal(ep, val.val); 

handleStateNormal (ep, pieces) 

   calcPendingRanges();  

calcPendingRanges () 

   for (tab : nonSysTabs)

      calcPendingRanges(tab); 

calcPendingRanges (tab) 

   for (r : affectedRanges) 

      tm.cloneOnlyTokenMap(); 

cloneOnlyTokenMap () 

   HashMap.create(ep.map); 

create(map) 

   for (m : map) 

      newmap.add(m);

O(N3)

O(N2)

O(N)

Figure 3: O(N3) scale-depended loops (§3.1). The partial

code segment above depicts the O(N3) loops in Figure 2. SFIND

automatically tags epStateMap, affected- Ranges, and map as

scale-dependent collections.

(h) Are scalability bugs easy to debug and fix? The bugs

took 1 month to fix on average with tens of back-and-forth

discussions. One big factor of delayed fixes is the lack of

budget for large test clusters as such luxury tends to only be

accessible in large companies, but not to open-source devel-

opers [26]. Another factor is that debugging and fixing are

not a single-iteration task; developers must repeatedly instru-

ment the system and re-run at scale to pinpoint the root cause

and test the patch.

3 SCALECHECK

We now present the design of SCALECHECK, which is com-

posed of two parts to achieve two goals: SFIND (§3.1), a pro-

gram analysis that exposes scale-dependent loops to devel-

opers, and STEST (§3.2), a set of colocation techniques that

enable hundreds of nodes to be colocated on one machine

for testing. While STEST produces accurate bug symptoms

in most cases, it does not deliver accurate results when all

nodes are CPU intensive. For this, we introduce PIL (§3.3),

an emulation technique that provides processing illusion.

3.1 SFIND

The first challenge to address is: how to find scale-dependent

loops? Unfortunately, it is not trivial as such loops can span

multiple functions and iterate many scale-dependent collec-

tions (iterable data-structure instances such as list). In Fig-

ure 3, the O(N3) loops span 1000+ LOC, 3 classes, and

10 functions and iterate 3 scale-dependent collections. This

difficulty motivates SFIND, a generic program analysis that

helps developers pinpoint scale-dependent loops. Below are

the three main steps of SFIND. For space, the pseudo-code

can be found in our supplement, Section 3.1 of [1].

(1) Auto-tagging of scale-dependent collections: SFIND

first automatically tags scale-dependent collections. This is

done by growing the cluster and data sizes (e.g., add nodes

and add files/blocks) in steps. After each step, we record

the size of each instantiated collection. When all the steps

are done, we check each collection’s growth tendency and

http://issues.apache.org/jira/browse/CASSANDRA-6127


mark as scale dependent those whose size increases as the

cluster/data size grows.

This, however, is insufficient due to two reasons. First,

there are collections that only grow when background/oper-

ational tasks are triggered (§2d); thus, we must also run all

non-foreground tasks. Second, there are “ephemeral” collec-

tions (e.g., messages) whose content are scale-dependent but

might have been garbage collected by the runtime. Given

that the measurements are taken in steps, garbage collection

can happen in between them so these collections will not be

detected consistently, thus this phase must be iterated multi-

ple times to remove such noise.

For Java systems, we track heap objects and map them to

their instance names by writing around 1042 LOC of analy-

sis on top of Java language supports such as JVMTI [67] and

Reflection [22]. This phase also performs a dataflow analysis

to taint all other variables derived from scale-dependent col-

lections. In our experience, by scaling out to just 30 nodes

(30 steps), which can be done easily on one machine, scale-

dependent collections can be clearly observed (though not

the symptoms). This phase found 32 scale-dependent collec-

tions in Cassandra (three in Figure 3) and 12 in HDFS.

(2) Finding scale-dependent loops: With the tagging,

SFIND then automatically searches for scale-dependent

loops, specifically by tainting loops (for, while) as well as

recursive functions that iterate through the scale-dependent

collections, performing a control-flow analysis to construct

the nested Big O complexity of each loop, and identify-

ing the loop contents (CPU/instructions only, IOs, or locks).

With these steps, in Figure 3 for example, SFIND can mark

applyStateLocally as an O(N3) function.

We also cover a special “implicit loop” – a synchronized

(locking) function in a node that is being called by all the

peer nodes. A common example is in the master-worker ar-

chitecture where all the N worker nodes RPC into a master’s

lock-protected function. When N grows, there is a potential

of lock contention (congestion) to the function (examples are

in §5.1). SFIND also handles such scenarios by tagging RPC

classes and searching for functions called by the peer nodes.

(3) Reporting and triaging: SFIND finds 131 scale-

dependent loops in Cassandra and 92 in HDFS, hence the

need for triaging. For example, if a function g has lower

complexity than f , and g is within the call path of f , then

testing f can be prioritized. For every nested loop to test,

SFIND reports the relevant control- and data-flows from the

outer-most to inner-most loop, along with the entry points

(either client/admin RPCs or background daemon threads).

The entry points are finally ranked by counting the num-

ber of spanned scale-dependent lines of code, the theoreti-

cal complexity (in terms of scale-dependent data structures),

the number of IO operations (including reads/writes) and

the number of blocking operations (including locking and

operations that block waiting for a future result) in that

path. The theoretical complexity is not by itself a com-

plete indicator of potential bottlenecks. For example, an

entry point reported with high complexity ,e.g. O(N3), but

with no IO/Blocking operations on its code path might not

be as bottleneck prone as one reported with less complex-

ity, e.g. O(N), but many IO/Blocking operations on its code

path. This ranking helps developers prioritize and create

the necessary test workloads. For example, in Figure 3, the

O(N3) path is only exercised if the cluster bootstraps from

scratch when peers do not know about each other (hinted

from the “if(!localStateMap.get())”, “onChange()”,

“state==STATUS” and “val==NORMAL”). SFIND reports that

this entry point spans over 6700 scale-dependent lines of

code and performs over 20N IO and 4N blocking opera-

tions, which implies that it is likely to become a bottleneck

as the cluster size grows and should be prioritized.

Creating test workloads from SFIND report is a manual

process. Automated test generation is possible for single-

machine programs/libraries [38], however, we are not aware

of any work that automates such process in the context of

real-world, complex, large-scale distributed systems. We put

our work in the context of DevOps culture [62] where devel-

opers are testers and vice versa, which (hopefully) simplifies

test workload creation.

3.2 STEST

The next challenge is: how to test scale-dependent loops

at real scales (hundreds of nodes) on one machine? Many

scale-dependent loops were unfortunately not subjected to

testing because existing unittest frameworks do not scale.

Below we describe the hurdles to achieve a high colocation

factor. Starting in Section 3.2.1, we began with black-box

methods (no/small target system modification).

Unfortunately, we found that existing systems are not

built with single-machine scale-testing in mind (the theme of

this section); we faced many colocation bottlenecks (memo-

ry/CPU contentions and context switching delays) that limit

large colocation. In Section §3.2.2, we will describe our so-

lutions to achieve single-machine scale-testable systems with

minimal changes. All the methods we use are summarized

in Table 1 using Cassandra as an example. Abbreviations of

our methods (e.g., NP, SPC, GEDA) are added for ease of

reference in the evaluation.

3.2.1 Black-Box Approaches

• Naive Packing (NP): The easiest setup is (naively) pack-

ing all nodes as processes on a single machine. However, we

did not reach a large colocation factor, which is caused by

the following reasons.

(a) Memory bottlenecks: Many distributed systems today

are implemented in managed languages (e.g., Java, Erlang)

whose runtimes consume non-negligible memory overhead.

Java and Erlang VMs, for example, use around 70 and 64



#Nodes LOC Colocation

per PC added bottlenecks

Black/gray-box approaches (§3.2.1)

(a) Naive (NP) 50 – Memory, proc. switch

(b) SPC 70 – User-kernel switch

(c) SPC+Stub 120 +91 Context switch

White-box approaches (§3.2.2)

(d) GEDA 130 +581 CPU

(e) GEDA+PIL 512 +246 CPU

Table 1: Colocation strategies and bottlenecks (§3.2).

MB of memory per process respectively. We also tried run-

ning nodes as Linux KVM VMs and using KSM (kernel

samepage merging) tool. Interestingly, the tool does not find

many duplicate pages even though the VMs/processes are

supposed to be similar (as reported elsewhere [65]). Over-

all, including Cassandra’s memory usage, per-node memory

consumption reaches 100 MB. Thus, a 32-GB machine can

only colocate around 300 nodes.

(b) Process context switches: Before we hit the memory

bottleneck (e.g., reach 300 nodes), we observed that the tar-

get systems’ “inaccuracy” is already high when we colocate

just 50 nodes. For measuring inaccuracy, we measure sev-

eral application-level metrics; for example, in Cassandra, if

gossips should be sent every 1 second, but are sent every

1.3 second, then the inaccuracy is 30%. We use 10% as the

maximum acceptable inaccuracy/event lateness. We noticed

high inaccuracies even before we hit the CPU bottlenecks

(i.e., CPU has not reached 90% utilization). We suspected

that the process context switches could be the reasons.

(c) Managed-language VM limitations: We also found

that managed-language VMs are backed by advanced ser-

vices. For example, Erlang VMM contains a DNS service

that sends heartbeat messages among connected VMs. When

hundreds of Erlang VMs (one for each Riak node) run on

one Erlang VMM, the heartbeat messages cause a “network”

overflow that undesirably disconnects Erlang VMs (also re-

ported in [40]). Naive packing is infeasible.

• Single-Process Cluster (SPC) + Network Stub: To ad-

dress the bottlenecks above, we deployed all nodes as threads

in a single process. Surprisingly, our target systems are not

easy to run in this “single-process cluster.” For example,

Cassandra developers bemoan the fact that their gossip/fault-

detector protocols are not adequately scale-tested [15, 28]

because Cassandra (and many other systems) uses “single-

ton” design pattern for simplicity (but bad for modularity)

[32]. That is, most global states are static variables that can-

not be modularized to per-node isolated variables.

Our strawman attempt was a redesign to a more modu-

lar one, which costs us almost 3000 LOC (and no longer a

black-box method); Cassandra developers also attempted a

similar method to no avail [15, 28]. We found another way:

leveraging class loader isolation support from the language

runtime [23], which is rarely used but fits SPC purpose. In
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Figure 4: Global Event Driven Arch. (Section 3.2.2). The

figure format follows [79, Figure 6].

Java systems, we can manipulate the class loader hierarchy

such that a node’s main thread (and all child threads) use an

isolated set of Java class resources, not shared with those be-

longed to other nodes, hence no target system modification.

Very recently, we found that Cassandra developers also begin

to develop a similar method to address this problem [8].

By SPC-ing Cassandra, we now hit a colocation limit of

70 nodes (Table 1b), but still have not reached the memory

or CPU bottlenecks. We suspected thread and/or user-kernel

context switching as a root cause. We removed the latter by

creating a generic network stub that (de)marshalls inter-node

messages and skips the OS. This stub is also helpful in re-

ducing network memory footprints under higher colocation.

For example, in Voldemort, the nodes communicate via Java

NIO [25] which is fast but contains buffers and connection

metadata that take up memory space and prevent >200-node

colocation (more in §5.4). For Cassandra, the network stub

allows up to 120-node colocation (Table 1c).

3.2.2 A White-Box Approach

Adding network stub is our last black-box approach as we

found no other way to reduce thread context switching in a

black-box way. In fact, we observed a massive thread con-

text switching issue. In P2P systems such as Cassandra, each

node spawns a thread to listen from a peer. Thus, just for

messaging, there are N2 threads to manage for the whole

cluster. This can be solved by using select()-like system

call [21], which would reduce the problem to N threads.

However, we still observed around N×26 active threads –

each node still runs multiple service stages (gossiper, failure

detector, etc.), each can be multi-threaded. A high colocation

factor will spawn thousands of threads.

• Global Event Driven Arch. (GEDA): To address the

problem, we must redesign the target system, but with min-

imal changes. We leverage the staged event-driven architec-

ture (SEDA) [79] (Figure 4a), common in server code, in

which each service/stage (in each node) exclusively has an

event queue and a thread pool. In STEST mode, we convert

SEDA to a global-event driven architecture (GEDA; Figure



4b). That is, for every stage, there is only one queue and one

thread pool for the whole cluster. As an example, let’s con-

sider a periodic gossip service. With 500-node colocation,

there are 500 threads in SPC, each sending a gossip every

second. With GEDA, we only deploy a few threads (matched

with the number of available cores) shared among all the

nodes for sending gossips. As another example, for gossip

processing stage, there is only one global gossip-receiving

queue shared among all the nodes.

GEDA works with a minimal code change to the tar-

get system. Logically, as events are about to be enqueued

into the original per-node event queues ( 1© in Figure 4), we

redirect them to GEDA-level event queues, to be later pro-

cessed by GEDA worker threads. This only requires ∼10

LOC change per stage (as we use aspect-oriented program-

ming [3]). While simple, care must be taken for single-

threaded/serialized stage. For example, Cassandra’s gossip

processing is intentionally single-threaded to prevent concur-

rency issues. This is illustrated in case 2© in Figure 4 where

the per-node stage is serialized (i.e., y must be processed af-

ter x). Here, if the events are forwarded down during en-

queue, GEDA’s multiple threads will break the program se-

mantic (e.g., x and y can be processed concurrently). Thus,

for single-threaded/serialized stage, we must interpose at de-

queue time ( 3© in Figure 4), which costs ∼50 LOC change

per stage (details in §3.2 of [1]). Thus, by default we inter-

pose at enqueue (small changes) and at dequeue for single-

threaded stage (more changes).

Adding GEDA to Cassandra only costs us 581 LOC (Ta-

ble 1d) and is simple; the same 10-50 LOC method above is

simply repeated across all the stages. Overall, GEDA does

not change the logic of the target systems, but successfully

removes some delays that should have never existed in the

first place, as if the nodes run exclusively on independent

machines. For HDFS tests, GEDA enables 512-node colo-

cation (§5.4) but for some Cassandra tests, it only enables

around 130-node colocation (Table 1d), which we elaborate

in the next section.

3.3 Processing Illusion (PIL)

Finally, the last challenge we address is: how to produce

accurate results (i.e., the same bug symptoms observed in

real-scale deployment) when colocating hundreds of CPU-

intensive nodes? We found that STEST is sufficient for ac-

curately revealing bug symptoms in scale-dependent lock-

related loops or IO serializations, as these root causes do

not contend for CPUs. For CPU-intensive loops, STEST is

also sufficient for master-worker architecture where only one

node is CPU intensive (e.g., HDFS master).

However, for CPU-intensive loops in P2P systems such as

Cassandra, where all nodes are busy, the bug symptoms re-

ported by STEST are not accurate. For example, for Cassan-

dra issue #c6127 (§2a), in 256-node real deployment, we ob-

served around 2000 flappings (the bug symptom) but 21,000

flappings in STEST. The inaccuracy gets worse as we scale;

with N CPU-intensive nodes on a C-core machine, roughly

N/C nodes contend on a given core.

To address this, we need to emulate CPU-intensive pro-

cessing by supplementing STEST with processing illusion

(PIL), an approach that replaces an actual processing with

sleep(). For example, for c6127, we can replace the expen-

sive gossip/stage-changes processing (see Figures 2 and 3),

with sleep(t) where t is an accurate timing of how long the

processing takes.

The intuition behind PIL is similar to the intuition behind

other emulation techniques. For example, Exalt provides an

illusion of storage space; their insight was “how data is pro-

cessed is not affected by the content of the data being writ-

ten, but only by its size” [78]. Similarly, PIL provides an

illusion of compute processing; our insight is that “the key

to computation is not the intermediate results, but rather the

execution time and eventual output.” In other words, with

PIL, we will still observe the overall timing behaviors and

the corresponding impacts accurately.

PIL might sound outrageous, but it is feasible as we ad-

dress the following concerns: how a function (or code block)

can be safely replaced with sleep() without changing the

whole processing semantic (§3.3.1) and how we can produce

the output and predict the timing “t” if the actual compute is

skipped (§3.3.2)?

3.3.1 PIL-Safe Functions

Our first challenge is to ensure that functions (or code

blocks) can be safely replaced with sleep(), but still retain

the cluster-wide behavior and unearth the bug symptoms. We

name such functions as “PIL-safe functions.” We identify

two main characteristics of such functions: (1) Memoizable

output: a PIL-safe function must have a memoizable (deter-

ministic) output based on the input of the function. (2) Non-

pertinent IOs: if a function performs local/remote disk IOs

that are not pertinent to the correctness of the corresponding

protocol, the function is PIL-safe. For example, in c6127,

there is a ring-table checkpoint (not shown) needed for fault

tolerance but is irrelevant (never read) during bootstrapping.

We extend SFIND to SFINDPIL, which includes a static

analysis that finds code blocks in scale-dependent loops that

can be safely PIL-ed. SFINDPIL analyzes the content of

each loop in functions related to the relevant cluster state and

checks for two cases: (1) The loop performs operations that

affect the cluster state, so we need to insert pre-memoization

and replay code to record/reconstruct the cluster state [1,

§3.3]. We consider all variables involved in the execution of

a target protocol as relevant states. While our static analysis

tool eases the identification of these variables, programmer

intervention can help for additional verification. In (2), the

loop performs non-pertinent operations only (such as IO). In

this case, we can automatically replace the loop with a sleep

call without affecting the behavior of the protocol.

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127


  in  = modVars;
  t = getTime(in);
  sleep(t);
  // F();
  modVars = getOut(in);  

list L1, L2, L3; 
    scale-dep list

func F(){
 for(...L1)
  for(...L2)
   for(...L3)
     ...; }

  in  = modVars;
  t1  = time();
  F();
  t   = time()-t1;   
  out = modVars;
  store(in,out,t);
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Figure 5: SCALECHECK complete automated flow (Section 3.4). ”SCk” represents SCALECHECK. The left-most figure illustrates

testing in real deployments, where testing time is fast (T ) but requires N machines. Stages (a) to (d) reflect the automated SCALECHECK

process as described in Section 3.4. STESTmez in stage (c) runs on one machine but will take some time (>T ). STESTPIL in stage (d) still

runs on one machine but only consumes a similar time as in deployment testing (T+e) and can be replayed numerous times.

3.3.2 Pre-Memoization (with Determinism)

As PIL-safe functions no longer perform the actual compu-

tation, the next question to address is: how do we manu-

facture the output such that the global behavior is not al-

tered (e.g., rebalancing protocol should terminate success-

fully)?. For functions with no pertinent outputs, we just

need to do time profiling but not output recording. For func-

tions with pertinent outputs, our solution is pre-memoization,

which records input-output pairs and the processing time,

specifically a tuple of three items (ByteString in, out, long

nanoSec) indexed by hash(in)), which represent the to-be-

modified variables before and after the function is executed

and the processing time, respectively (Figure 5b).

Another challenge encountered is non-determinism: the

state of each node (the input) depends on the order of ar-

riving messages (which are typically random). Let’s con-

sider Riak’s bootstrap+rebalance protocol where eventually

all nodes own a similar number of partitions. A node initially

has an unbalanced partition table, receives another partition

table from a peer node, then inputs it to a rebalance function,

and finally sends the output to a random node via gossiping.

Every node repeats the same process until the cluster is bal-

anced. In a Riak cluster with N=256 and P=64, there are

in total 2489 rebalance iterations with a set of specific inputs

in one run. Another run of the protocol will result in a differ-

ent set of inputs due to gossip randomness. Our calculation

shows that there are (NNP )2 possible inputs.

To address this, during pre-memoization, we also record

non-determinism such as message orderings such that or-

der determinism is enforced during replay. For example,

across different runs, a Riak node now receives gossips from

the same sequence of nodes. With order determinism, pre-

memoization and SCALECHECK work as follow: (1) We

first run the whole cluster on a real deployment and inter-

pose sleep-safe functions. (2) When sleep-safe functions are

executed, we record the inputs and corresponding outputs

to a memoization database (SSD-backed files). (3) Dur-

ing this pre-memoization phase, we record message non-

determinism (e.g., gossip send-receive pairs and their tim-

ings). (4) After pre-memoization completes, we can repeat-

edly run SCALECHECK wherein order determinism is en-

forced (e.g., no randomness), sleep-safe functions replaced

with PIL, and their outputs retrieved from the memoization

database. Note that steps 1-3 are the only steps that require

real deployment.

Other than this, similar to the theme in the previous section

that existing systems are not amenable to single-machine

testing, we found similar issues such as the use of wall-

clock time which essentially incapacitates memoization and

replay. Here, we convert wall-clock time to “cluster start

time + elapse time” in 296 LOC (Table 1e).

3.4 Putting It All Together

Figure 5a-d summarizes the complete four stages of

SCALECHECK: a© SFIND searches for scale-dependent

loops which helps developers create test workloads. b©

For test workloads that show CPU busyness in all nodes,

SFINDPIL finds PIL-safe functions and inserts our pre-

memoization library calls. Next, STEST now works in two

parts. c© STESTmez (without PIL) will run the test on a

real cluster, but just one time, to pre-memoize PIL-safe func-

tions and store the tuples to a SSD-backed database file. d©

STESTPIL (with PIL) will then run by having SFINDPIL re-

move the pre-memoization library calls, replace the expen-

sive PIL-safe function with sleep(t), and insert our code

that constructs the memoized output data. SCALECHECK

also records message ordering during STESTmez and replays

the same order in STESTPIL (not shown).

As another benefit, SCALECHECK can also ease real-scale

debugging efforts. First, the only step that consumes more

time is the no-PIL pre-memoization phase (Figure 5c), up

to 6x longer time than real-deployment testing (§5.5). How-

ever, this is only a one-time overhead. Most importantly,

developers can repeatedly re-run STESTPIL (Figure 5d) as

many times as needed (tens of iterations) until the bug be-

havior is completely understood. In STESTPIL, the protocol

under test runs in a similar duration as if all the nodes run on

independent machines.

Second, some fixes can be tested by only re-running the

last step; for example, fixes such as changing the failure

detector Φ algorithm (for c6127), caching slow methods

(c3831), changing lock management (c5456), and enabling

parallel processing (v1212). However, if the fixes involve

a complete redesign (e.g., optimized gossip processing in

c3881, decentralized to centralized rebalancing in r3926),

STESTmez must be repeated.

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-5456
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html


Cass HDFS Riak Vold

STEST-able systems 918 179 217 800

SFIND code 4026 (generic)

STEST library 6047 (generic)

Table 2: Integrations LOC (Section 4). More explanations

are in Section 4 of [1]. We will release our code publicly.

4 Application and Implementation

Table 2 quantifies the application of SCALECHECK tech-

niques to a variety of distributed systems, Cassandra [58],

HDFS [18], Riak [30], and Voldemort [29]. The major

system-specific change is achieving “STEST-able systems”

(i.e., supporting SPC and GEDA), which range between 179

to 918 LOC (less than 1 % of the target code size). This

is analogous to how file systems code are modified to make

them “friendlier” to fsck [52, 63]. The rest is the generic

SFIND and STEST library code (pre-memoization, auto PIL

insertion, message order determinism support, AspectJ util-

ities). SFIND was built with Eclipse AST Parser [11] to

support Java programs. We leave porting to Erlang’s parser

[12, 13] as future work.

Generality: We show the generality of SCALECHECK with

two major efforts. First, we scale-checked a total of 18 pro-

tocols: 8 Cassandra (e.g., bootstrap, scale-out, decommis-

sion), 8 HDFS (e.g., decommission, block reports, snapshot),

1 Riak (rebalance), and 1 Voldemort (rebalancing) protocols

(full list in §4 of [1]). A protocol can be built on top of

other protocols (e.g., bootstrap on gossip and failure detec-

tion protocols). Second, for exposing known bugs, we ap-

plied SCALECHECK to a total of 10 earlier releases: 4 Cas-

sandra, 4 HDFS, 1 Riak, and 1 Voldemort old releases. For

finding unknown bugs, we also ran SCALECHECK on recent

releases of the four systems.

5 Evaluation

We now evaluate SCALECHECK: Is SCALECHECK effective

in exposing scalability bugs (§5.1-5.2), accurate (§5.3), scal-

able and efficient (§5.4-5.5)? We compare SCALECHECK

with real deployments of 32 to 512 nodes, deployed on at

most 128 machines (testbed group limit), each has 16-core

AMD Opteron(tm) with 32-GB DRAM.Our target protocols

only make at most 2 busy cores per node, which justifies

why we pack 8 nodes per one 16-core machine for the real

deployment.

5.1 Exposing Scalability Bugs

Table 3 lists the 10 real-world bugs we use for benchmark-

ing SCALECHECK. We chose these 10 bugs (among the 55

bugs we studied) because the reports contain detailed de-

scriptions of the bugs, which is important for us to create

the “input” (i.e., the test cases). Figure 6 shows the accuracy

Bug# N Protocol Metric Tm Tpil

c6127 [7] ≥256 Bootstrap #flaps 2h 15m

c3831 [6] ≥256 Decomm. #flaps 17m 9m

c3881 [5] ≥64 Add nodes #flaps 7m 5m

c5456 [4] ≥256 Add nodes #flaps 16m 4m

r3926 [31] ≥128 Rebalance TComp 6h 2h

v1212 [33] ≥128 Rebalance TComp 22h –

h9198 [19] ≥256 Blk. report QSize 8m –

h4061 [17] ≥256 Decomm. TLock 6h –

h1073 [16] ≥512 Pick nodes TComp 1m –

h395 [20] ≥512 Blk. report TComp 5m –

Table 3: Bug benchmark (§5.1). The table lists the scal-

ability bugs we use for benchmarking SCALECHECK. “c” stands

for Cassandra, “h” for HDFS, “r” for Riak, and “v” for Volde-

mort. The “N” column represents the #nodes for the bug symptoms

to surface. The “Metric” column lists the quantifiable metrics of

the bug symptoms; TComp, TLock, and QSize denote computation

time, lock time, and queue size, respectively. The “Tm” and “ Tpil”

columns quantify the duration of the pre-memoization (STESTmez)

and PIL replay (STESTPIL) stages when N≥256, as discussed in

§5.5. “–” implies PIL is unnecessary.

of SCALECHECK in exposing the 10 bugs using the “bug-

symptom” metrics in Table 3 (the first bug c6127 will be

shown later in Section 5.3 and the last bug h395 is omitted

in Figure 6 for space).

Results summary: First, SCALECHECK is effective and ac-

curate in exposing scalability bugs, some of which only sur-

face in 256+ nodes. As shown, for Cassandra and Riak bugs

where all nodes are CPU intensive, PIL is needed for accu-

racy (SCk+PIL vs. Real lines in Figures 6a-d), but for the rest,

STEST suffices (SCk vs. Real in 6e-f).

Second, SCALECHECK can help developers prevent recur-

ring bugs; the series of Cassandra bugs (as described later

below) involves the same protocols (gossip, rebalance, and

failure detector) and create the same symptom (high #flaps).

As code evolves, it can be continuously scale-checked with

SCALECHECK.

Third, different systems of the same type (e.g., key-value

stores, master-worker file systems) implement similar proto-

cols. The effectiveness of SCALECHECK methods in scale-

checking the different protocols above can be useful to many

other distributed systems.

Bug descriptions: We now briefly describe the bugs.

Longer descriptions can be found in Section 5.1 of [1].

(a) Figure 6a: In Cassandra c3831 [6] when a node X is

removed, all other nodes must own X’s key-partitions. This

scale-dependent, CPU-intensive “pending keyrange calcula-

tion” cause cluster-wide flapping (the y-axis), observable in

256+ nodes. The fix caches the outputs of slow methods.

(b) Figure 6b: c3881 [5] is similar to the previous bug

(c3831), but the fix was obsolete as the concept of multi-

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/CASSANDRA-5456
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/HDFS-9198
http://issues.apache.org/jira/browse/HADOOP-4061
http://issues.apache.org/jira/browse/HADOOP-1073
http://issues.apache.org/jira/browse/HDFS-395
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/HDFS-395
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/CASSANDRA-3831
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Figure 6: SCALECHECK effectiveness in exposing scalability bugs (Section 5.1). ”SCk” represents SCALECHECK. The bugs

are listed in Table 3. The x-axis represents the number of nodes (N ). The figure title describes the y-axis, i.e., the bug symptom metrics

as recorded in “Real” deployment vs. SCALECHECK. For Cassandra and Riak bugs (a-d), where all nodes are CPU-intensive, the bug

symptoms are inaccurate without PIL (“SCk” lines). However, with PIL (“SCk+PIL” lines), the bug symptoms are relatively accurate as in

the real deployment scenarios. For Voldemort and HDFS bugs (e-h), where there is no concurrent CPU busyness, PIL is not needed.

ple key-partitions per node was added. The calculation is

now scale-dependent on N×P . This causes CPU spikes

and massive flapping during scaling out; the bug surfaced in

64+ nodes (when 32+ new nodes are added to existing 32+

nodes). The bug was fixed with a complete redesign of the

pending keyrange calculation.

(c) Figure 6c: Interestingly, c5456 [4] is a bug in the same

protocol as above. The previous fix was obsolete again as

pending range calculation is now multi-threaded; range cal-

culations can happen concurrently. However, this new design

introduces a new coarse-grained lock that can block gossip

processing for a long time, thus introduces flapping (in 256+

nodes). The fix changed the lock management.

(d) Figure 6d: In r3926 [31], Riak’s rebalancing algorithm

employed 3 complex stages (claim-target, claim-hole, full-

rebalance) to converge to a perfectly balanced ring. Each

node runs this CPU-intensive algorithm on every bootstrap-

gossip received. The larger the cluster, the longer time the

perfect balance is achieved (a high y value in 128+ nodes).

(e) Figure 6e: In v1212 [33], Voldemort’s rebalancing was

not optimized for large clusters; it led to more stealer-donor

partition transitions as the cluster size grows (128+ nodes).

The fix changed the stealer-donor transition algorithm.

(f) Figure 6f: In h9198 [19], incremental block reports

(IBRs) from HDFS datanodes to the namenode acquire the

global master lock (i.e., a special worker-to-master “loop”

as explained in §3.1). As N grows, more IBR calls acquire

the lock. The IBR requests quickly backlog the namenode’s

IPC queue; with 256 nodes, the IPC queue hits the max of

1000 pending requests; y=1 (×1000). When this happens,

user requests are undesirably dropped by the namenode. The

fix batches the IBR request processing. In HDFS, to emu-

late large blocks, we reuse the “TinyDataNode” class (1KB

blocks) that the developers already use in the unit tests.

(g) Figure 6g: In h4061 [17], when D datanodes are de-

commissioned, the blocks must be replicated to the other

N−D nodes. Every 5 minutes, the DecommissionMonitor

thread in the namenode iterates all the block descriptors to

check if the D nodes can be safely decommissioned (when

all data replications complete). This thread, unfortunately,

must hold the global file system lock. When N is 256+, this

process can hold the lock (i.e., stall user requests) for more

than 10 seconds (y>10). The fix used a dedicated thread to

manage decommissioning and refined the algorithm.

(h) Figure 6h: In h1073 [16], for a new file creation,

the namenode calls a chooseTarget function to sort a list

of target datanodes from their distances from the writer and

choose the best nodes. When N and the replication factor

are large, it can take more than one second to choose. The

fix modified the sorting algorithm.

(i) Finally, in h395 [20] (figure not shown for space),

datanodes send block reports too frequently and when

N>512 nodes, the namenode spends more time in this back-

ground process as opposed to serving users.

5.2 Discovering Unknown Bugs

We also integrated SCALECHECK to recent stable versions

of Cassandra, HDFS, Riak, and Voldemort, and found 1 un-

known bug in Cassandra and 3 bugs in HDFS.

For Cassandra, SFIND pointed us to another nested scale-

dependent loop. We created the corresponding test case and

SCALECHECK showed that cluster-wide flapping resurfaces

again but only in 512-node deployment. As an example,

decommissioning just only one node already caused almost

100,000 flaps. The developers confirmed that the bug is re-

lated to a design problem. To prevent flappings, the devel-

http://issues.apache.org/jira/browse/CASSANDRA-5456
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/HDFS-9198
http://issues.apache.org/jira/browse/HADOOP-4061
http://issues.apache.org/jira/browse/HADOOP-1073
http://issues.apache.org/jira/browse/HDFS-395


a) #flaps = f( Φ > 8 )
b) Φ = f( TavgGossip, TlastGossip )

TavgGossip = avg. of last 1000 TlastGossip

c) TlastGossip = f( #hops, TgossipExec )
#hops = log(N) on average

TgossipExec = TstateUpdate (if new state changes)

d) TstateUpdate = f( SizeringTable, SizenewStates )
SizeringTable ≤N×P and SizenewStates ≤N

Figure 7: Cassandra internal metrics (§5.3). Above are the

metrics we measured within the Cassandra bootstrap protocol for

measuring SCALECHECK accuracy (Figure 8). “f” represents “a

function of” (i.e., an arbitrary function).

opers suggested us to add/remove node one at a time with 2-

minute separation, which means scaling-out/down 100 nodes

will take over 3 hours (i.e., this bug impedes instant elas-

ticity). The developers recently started a new initiative for

designing “Gossip 2.0” to scale to 1000+ nodes [14].

For Riak and Voldemort, we found that their latest-stable

bootstrap/rebalance protocols do not exhibit any scalability

bug, up to 512 nodes.

For HDFS, we found 3 instances of scale-dependent loops

that hold the entire namenode read/write lock (also con-

firmed by the developers). Specifically, SFIND reports the

following number of lines executed:

FSNamesystem.getSnapshotDiff N*(85*B+17)

DatanodeManager.refreshDatanodes N*(136*B+137)

FSNamesystem.metaSave N*(50*B+21)

Here, “B” represents the number of blocks per datanode

(e.g., 10,000). The first function, getSnapshotDiff, contains

a bug that the HDFS developers were hunting for 4 weeks, as

the unresponsive-namenode impact recently affected a cus-

tomer. In this path, there is a recursive function iterating

on a list of files and blocks and a conditional path that makes

ACL lookups which causes the namenode to be unresponsive

for more than 40 seconds in at least a 512-node deployment.

Similar symptoms were also reproduced for the second and

third bugs (refreshDatanodes and metaSave). The develop-

ers say these bugs are dangerous because if the namenode is

paused for 45 seconds, it will cause a heavy failover. They

also say these bugs are hard to find in a million-plus lines of

code. More details/graphs are in §5.2 of [1].

5.3 Accuracy

The goal of our next evaluation is to show that PIL-

infused SCALECHECK mimics similar behaviors as in real-

deployment testing and is accurate not only in the final bug-

symptom metric but also in the detailed internal metrics. For

this, we collected roughly 18 million values. For space, we

only focus on c6127 [7] (see §2a).

Figure 7a-d shows the internal metrics that we measured

within Cassandra failure detection protocol for every pair of

nodes; the algorithm runs on every node A for every peer

B. Figures 8a-d compare in detail the accuracy of STEST
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Figure 8: Accuracy in exposing c6127 (§5.3). The fig-

ures represent the metrics presented in Figure 7, measured in real

deployment (“Real”) and in SCALECHECK (”SCk”) with different

cluster sizes (32, 64, 128, 256, and 512 in the x-axis). The y-axes

(the metrics) are described in the figure titles.

without PIL (“SCk”) and STESTPIL with PIL (“SCk+PIL”),

respective to the real-deployment testing (“Real”).

(a) Figure 8a shows the total number of flaps (alive-

to-dead transitions) observed in the whole cluster during

bootstrapping. STEST by itself will not be accurate if

all nodes are CPU intensive (§3.3). However, with PIL,

SCALECHECK closely mimics real deployment scenarios.

Next, Figure 7a defines that #flaps depends on Φ [50]. Every

node A maintains a Φ for a peer B (a total of N×(N−1)
variables to monitor).

(b) Figure 8b shows the maximum Φ values observed for

every peer node; for graph clarity, from here on we only

show with-PIL results. For example, for the 512-node setup,

the whisker plots show the distribution of the maximum Φ
values observed for each of the 512 nodes. As shown, the

larger the cluster, more Φ values exceeds the threshold value

of 8, hence the flapping. Figure 7b points that Φ depends on

the average inter-arrival time of when new gossips about B

arrives at A (TavgGossip) and the time since A heard the last

gossip about B (TlastGossip). The point is that TlastGossip

should not be much higher than TavgGossip.

(c) Figure 8c shows the whisker plots of gossip inter-

arrival times (TlastGossip) that we collected for every A-B

pair (millions of gossips as a gossip message contains N
gossips of the peer nodes). The figure shows that in larger

clusters, new gossips do not arrive as fast as in smaller clus-

ters, especially at high percentiles. Figure 7c shows that

TlastGossip depends on how far B’s new gossips propagate

through other nodes to A (#hops) and the gossip processing

time in each hop (TgossipExec). The latter (TgossipExec) is

essentially the state-update processing time (TstateUpdate),

triggered whenever there are state changes.

http://issues.apache.org/jira/browse/CASSANDRA-6127
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(d) Figure 8d (in log scale) shows the whisker plots of

the state-update processing time (TstateUpdate). In the 512-

node setup, we measured around 25,000 state-update invoca-

tions. The figure shows that at high percentiles, TstateUpdate

is scale dependent (the culprit). As shown in Figure 7d,

TstateUpdate complicatedly depends on a scale-dependent

2-dimensional input (SizeringTable and SizenewStates).

A node’s SizeringTable depends on how many nodes it

knows, including the partition arrangement (≤N×P ) and

SizenewStates (≤N ), which increases as cluster size grows.

5.4 Colocation Factor

This section shows the maximum colocation factor

SCALECHECK can achieve as each technique is added one

at a time on top of the other. To recap, the techniques are:

single-process cluster (SPC), network stub (Stub), global

event driven architecture (GEDA), and processing illusion

(PIL). The results are based on a 16-core machine.1

Maximum colocation factor (“MaxCF”): A maximum

colocation factor is reached when the system behavior in

SCALECHECK mode starts to “deviate” from the real deploy-

ment behavior. Deviation happens when one or more of the

following bottlenecks are reached: (1) high average CPU uti-

lization (>90%), (2) memory exhaustion (nodes receive out-

of-memory exceptions and crash), and (3) high event “late-

ness.”

Queuing delays from thread context switching can make

events late to be processed, although the CPU utilization is

not high. We instrument our target systems to measure event

lateness of relevant events (as described in §3.2.2). We use

10% as the maximum acceptable event lateness. Note that

the residual limiting bottlenecks come from the main logic

of the target protocols, not removable with general methods.

Results and observations: Figure 9 shows different se-

quences of integration to our four target systems and the re-

sulting maximum colocation factors. We make several im-

portant observations from this figure.

First, when multiple techniques are combined, they col-

lectively achieve a high colocation factor (up to 512 nodes

for the three systems respectively). For example, in Figure

9a, without using PIL in Cassandra, MaxCF only reaches

136. But with PIL, MaxCF significantly jumps to 512. When

we increased the colocation factor (+100 nodes) beyond the

maximum, we hit the residual bottlenecks mentioned before;

at this point, we did not measure MaxCF with small incre-

ments (e.g., +1 node) due to time limitation.

Second, distributed systems are implemented in different

ways. Thus, integrations to different systems face different

sequences of bottlenecks. To show this, we tried different

sequences of integration sequences. For example, in Cas-

sandra (Figure 9a), our integration sequence is +SPC, +Stub,

1So far, we consistently use the same testbed, but a higher-end machine

can be used in the future.
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Figure 9: Maximum colocation factor (Section 5.4). The

colocation factor reached as each technique is added.

+GEDA, and +PIL (as we hit context switching overhead be-

fore CPU). For Riak (Figure 9b), we began with PIL as we

hit CPU limitation first before hitting Erlang VMM network

overflow which requires SPC (§3.2.1), and Riak does not re-

quire GEDA because Erlang, as an event-driven language,

manages thread executions as events (more in Section 5.4 of

[1]). For Voldemort (Figure 9c), we began with SPC and

then network stub to reduce Java VM and Java NIO mem-

ory overhead respectively, and PIL so far is not needed as

the tested workload does not involve parallel CPU-intensive

operations. For HDFS (Figure 9d), we only need SPC and

GEDA but not PIL as only the master node that is CPU in-

tensive (but not the datanodes).

Finally, it is the combination of all techniques that make

SCALECHECK effective. For example, while in Figure 9a

we apply the sequence of SPC+Stub+GEDA+PIL resulting

in PIL as the dominant factor, in another experiment we ap-

plied a different sequence PIL+SPC+Stub and failed to hit

512 nodes, not until GEDA is added and becomes the domi-

nant factor.

5.5 Pre-Memoization and Replay Time

The “Tm” and “Tpil” columns in Table 3 on page quanti-

fies the duration of the pre-memoization (STESTmez) and

PIL-based replay (STESTPIL) stages when N≥256. For

example, for CPU-intensive bugs such as c6127, the pre-

memoization time takes 2 hours while the PIL-based replay

is only 15 minutes (similar to the real-deployment test); for

r3926, it is 6 vs. 2 hours. Pre-memoization does not neces-

sarily take N× longer time because one node only consumes

2 cores (while the machine has 16 cores) and also not every

node is busy all the time.

5.6 Test Coverage

SFIND labeled 32 collections in Cassandra and 12 in HDFS

as scale dependent. From these, SFIND identified 131 and 92

scale-dependent loops in Cassandra and HDFS (out of more

than 1500 and 1900 total loops) respectively. So far, we have

tested 57 (44%) and 64 (69%) of the loops in Cassandra and

HDFS. The time-consuming factor is the manual creation of

new test cases that will exercise the loops (see end of §3.1).

http://issues.apache.org/jira/browse/CASSANDRA-6127
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We emphasize that SFIND is not a bug-finding tool, hence

the reason why we do not report false positives. A more

complete picture of SFIND’s output can be found in Section

5.6 of our supplemental document [1].

6 Discussion

At the moment, our work focuses on scale-dependent

CPU/processing time (§2c), and the “scale” here implies the

scale of cluster size. However, there are other scaling prob-

lems that lead to IO and memory contentions [46, 69, 76],

usually caused by the scale of load [37, 47] or data size [64].

For emulating data size, we are only aware of one work, Ex-

alt [78], which is orthogonal to SCALECHECK (more in §7).

In our bug study, we learn that some load or data-size related

bugs can be addressed with accurate modeling [47] (e.g., d
dead nodes will add d/(N−d) load to every live node) and

some others can already be reproduced with a single ma-

chine (e.g., loading as much file metadata to check the limit

of HDFS memory bottleneck [76]). Nevertheless, we will

continue our study of these other scaling dimensions, espe-

cially as scaling bugs in datacenter distributed systems is not

a well-understood problem.

So far, SCALECHECK is limited as a single-machine

framework, which integrates well to the de-facto unit-test

style. To increase colocation factor, a higher-end machine

can be used. Another approach is to extend SCALECHECK

to run on multiple machines. However, this means that we

need to enable back the networking library, which originally

already caused a colocation bottleneck. We also acknowl-

edge as a limitation that adding new code will also add new

maintenance costs. In future work, we intend to approach

zero-effort emulation.

Finally, SFIND by itself is not sufficient to reveal scalabil-

ity bugs. Building a program analysis that covers all paths

and understands the cascading impacts is challenging. Not

all scale-dependent loops imply buggy code.

7 Related Work

In Section 1, we briefly discussed related work in four cate-

gories: real-scale testing/benchmarking (direct, but not eco-

nomical) [26, 59], large-scale simulation (easy to run, but

rarely used for server infrastructure code) [39, 54, 57], ex-

trapolation (easy to run, but missing bugs in small training

scale) [57, 61, 75, 80], and emulation. SCALECHECK falls

in this category and below discuss three closely related works

[10, 48, 78].

Exalt [78] targets IO-intensive (Big Data) scalability prob-

lems where storage capacity is the colocation bottleneck.

Exalt’s library (Tardis) compresses users’ data to zero bytes

on disk. With this, Exalt can co-locate 100 space-emulated

HDFS datanodes per machine. As the authors stated, their

approach “may not discover scalability problems that arise

at the nodes that are being emulated” [78]. Thus, it can-

not cover P2P systems where the scale-dependent code is in

all the nodes. However, as Exalt targets storage space em-

ulation and SCALECHECK addresses processing time emu-

lation, we believe they complement each other. LinkedIn’s

Dynamometer is similar to Exalt [10].

DieCast [48], invented for network emulation, can colo-

cate processes/VMs on a single machine as if they run indi-

vidually, by “dilating” time. The trick is adding a “time di-

lation factor” (TDF) support [49] into the VMM. For exam-

ple, TDF=5 implies that for every second of wall-clock time,

each emulated VM believes that time has advanced by only

200 ms (1/TDS second). DieCast was only evaluated with a

colocation factor (TDF) of 10 as the testing time significantly

increases proportionally to the TDF; colocating 500 nodes

will increase testing time by 500 times. DieCast was intro-

duced for answering “what if the network is much faster?”,

but not specifically for single-machine scale-testing. An-

other significant difference is that both Exalt and DieCast

papers do not present an in-depth bug study.

In terms of related work in the static/program analysis

space, Clarity [66] and Speed [45] use static analysis to look

for potential performance bottlenecks by focusing on redun-

dant traversals and precise complexity bounding. Both ap-

proaches are evaluated in libraries. However, for distributed

systems, real-scale testing can help reveal unintended com-

plex component interactions, and not all scale-dependent

loops cause problems.

Finally, a recent work also highlights the urgency of com-

bating scalability bugs [60]. The work, however, does not

employ methodical and incremental changes, only suggests

a manual approach, and reproduces only 4 bugs in 1 system.

8 Conclusion

Technical leaders of a large cloud provider emphasized that

“the most critical problems today is how to improve test-

ing coverage so that bugs can be uncovered during testing

and not in production” [43]. It is now evident that scala-

bility bugs are new-generation bugs to combat, that exist-

ing large-scale testing is arduous, expensive, and slow, and

that today’s distributed systems are not single-machine scale-

testable. Our work addresses these contemporary issues and

will hopefully spur more solutions in this new area.
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