The Tail at Store: A Revelation from
Millions of Hours of Disk and SSD Deployments

Mingzhe Had, Gokul SoundararajanDeepak Kenchammana-Hosekote
Andrew A. Chien, and Haryadi S. Gunawi

fUniversity of Chicago *NetApp, Inc.

Abstract network switches, back-end storage), background dae-
Kdnons, scheduling, power limits and energy management,

and 4,000 SSDs over 87 days for an overall total of 857‘:“"nd many others. These studies are mostly performed at
million (disk) and 7 million (SSD) drive hours. We find S€"Ver- Network, or remote (cloud) storage levels.
that storage performance instability is not uncommon: 10 date, we find no systemati@rge-scale studiest
0.2% of the time, a disk is more than 2x slower thanPerformance instability irstorage devicesuch as disks
its peer drives in the same RAID group (and 0.6% forand SSDs. Yet, mounting anecdotal evidence of disk and
SSD). As a consequence, disk and SSD-based RAIDs ex>D performance instability in the field continue to ap-
perience at least one slow drive (i.e., storage tail) 1.5%Pear in various forumsig). Such ad-hoc information is
and 2.2% of the time. To understand the root causes, wdnable to answer quantitatively key questions about drive
correlate slowdowns with other metrics (workload 1/O Performance instability, questions such as: How much
rate and size, drive event, age, and model). Overa",slowdown do drives exhibit? How often does slowdown
we find that the primary cause of slowdowns are the in-0ccur? How_widespread is it? Does slowdown .have tem-
ternal characteristics and idiosyncrasies of modern diskPOral behavior? How long can slowdown persist? What
and SSD drives. We observe that storage tails can add'® the potential root causes? What is the impact of tail
versely impact RAID performance, motivating the desig,{atencies from_slow drive; to the RAID layer? Answers
of tail-tolerant RAID. To the best of our knowledge, this {0 these questions could inform a wealth of storage sys-
work is the most extensive documentation of storage pef®Mms research and design.
formance instability in the field. To answer these questions, we have performed the
largest empirical analysis of storage performance insta-
. bility. Collecting hourly performance logs from cus-
1 Introduction tomer deployments of 458,482 disks and 4,069 SSDs

Storage, the home of Big Data, has grown enormouslf‘p"’mning on average 87 day periods, we have amassed

over the past decad@]]. This year Seagate projects to a dataset that covers 857 million hours of disk and 7 mil-
ship more than 240 exabytes of disk driveég]] SSD lion hours of SSD field performance data.
market has doubled in recent yea®§][ and data stored Uniquely, our data includes drive-RAID relationships,
in the cloud has also multiplied almost exponentially ev-Which allows us to compare the performance of each
ery year L. In a world of continuous collection and drive (D;) to that of peer drives in the same RAID group
analysis of Big Data, storage performance is critical for(¢ = 1..V). The RAID and file system architecture in
many applications. Modern applications particularly de-our study £3.1) expects that the performance of every
mand low and predictable response times, giving rise télrive (specifically, hourly average latengy) is similar
stringent performance SLOs such as “99.9% of all re-to peer drives in the same RAID group.
guests must be answered within 300m%5,[48]. Per- Our primary metric,drive slowdown ratio(.S;), the
formance instability that produces milliseconds of delayfraction of a drive’s latencyl;) over the median latency
lead to violations of such SLOs, degrading user experi-of the RAID group {nedian(L1. n)), captures deviation
ence and impacting revenues negativély, [35, 44]. from the assumption of homogeneous drive performance.
A growing body of literature studies the general prob- Assuming that most workloads are balanced across all
lem of performance instability in large-scale systems,the data drives, a normal drive should not be much slower
specifically calling out the impact of stragglers on tail than the other drives. Therefore, we defirsoW’ (un-
latencies [, 13, 14, 34, 45, 50, 52, 54, 56]. Strag-  stable) drive hour whel§; > 2 (and “stable” the other-
glers often arise from contention for shared local re-wise). Throughoutthe paper, we use 2x and occasionally
sources€.g, CPU, memory) and global resourcesq, 1.5x slowdown threshold to classify drives as slow.

We study storage performance in over 450,000 dis
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In the following segment, we briefly summarize the and drive replacement is expensive in terms of hardware
findings from our large-scale analysis. and RAID rebuild costs.

(i) Slowdown occurrenceg§4.1.1): Disks and SSDs are (vi) The n_eed fortail-'_tolerant RAID : All of the reasons
slow (S; > 2) for 0.22% and 0.58% afrive hoursin our apove pomtoutthat_ f|_|¢_and RAID systems are now faced
study. With a tighteis; > 1.5 threshold, disks and SSDs with more responsibilities. Not only must they handle
are slow for 0.69% and 1.27% of disk hours respectively.well.'known faults such as latent sector errors an(_j cor
Consequently, stable latencies at 99.percentile are ruptions, now they must mask storag_e tail Iatencu?‘s as
hard to achieve in today’s storage drives. Slowdowné’ve”' T?erefore, there is an opportunlty_to creafce tail
can also be extreméé, long tails); we observe several tolerant” RAID that can mask storage tail latencies on-

slowdown incidents as large as 2-4 orders of magnitudel.Ine in deployment.

(ii) Tail hours and RAID degradation (§4.1.9: A slow . In the following sections, we present further motiva-
drive can often make an entire RAID perform poorly. fion (§2), our methodology{3), the main resultsi¢), an

The observed instability causes RAIDs to suffer 1.59,CPPOrtunity assessment of tail-tolerant RAIED), dis-

and 2.2% oRAID hourswith at least one slow drivé.¢, ~ €uSSion £6), related work £7) and conclusion§g).

“tail hours” ). Using 1.5x slowdown threshold, the num-

b_ers are 4.6% and _4.8%. As a consequent, stable laterp  Motivational Anecdotes

cies at 99" percentile (or 98" with 1.5x threshold) are

impossible to guarantee in current RAID deployments.Our work is highly motivated by the mounting anecdotes
Workload performance (especially full-stripe balancedof performance instability at the drive level. In the past
workload) will suffer as a consequence of RAID tails. several years, we have collected facts and anecdotal ev-
In our dataset, we observe that RAID throughput can deidence of storage “limpware”lf, 26] from literature,
grade during stable to tail hour$A(4.1). online forums supported by various storage companies,
and conversations with large-scale datacenter operators

(iii) Slowdown temporal behavior and extent(§4.1.3
§4.1.4): We find that slowdown often persists; 40% and as well as product teams. We found many reports of stor-
o ' age performance problems due to various faults, com-

35% of slow disks and SSDs respectively remain unsta- ° .~ - ) .
ble for more than one hour. Slowdown periods exhibitpleX't'eS.and |d|osyngra3|es of modern storage devices,
temporal locality; 90% of disk and 85% of SSD slow- as we briefly summarize below.

downs occur on the same day of the previous occurrenc®isk: Magnetic disk drives can experience perfor-
Finally, slowdown is widespread in the drive population; mance faults from various root causes such as mechan-
our study shows 26% of disks and 29% of SSDs havecal wearout €.g, weak head]]), sector re-reads due
experienced at least one slowdown occurrence. to media failures such as corruptions and sector er-
rors [2], overheat from broken cooling fan§][ gunk
spilling from actuator assembly and accumulating on
disk head 4], firmware bugs 41], RAID controller de-
fects [L6, 47], and vibration from bad disk drive packag-
ing, missing screws, earthquakes, and constant “noise”
in data centersl[7, 29]. All these problems can reduce
(v) “The fault is (likely) in our drives” : We find that  disk bandwidth by 10-80% and increase latency by sec-
older disks exhibit more slowdown§4.3.2 and MLC  onds. While the problems above can be considered as
flash drives exhibit more slowdowns than SLC drivesperformance “faults”, current generation of disks begin
(84.3.3. Overall, evidence suggests that most slow-to induce performance instability “by defaul.g, with
downs are caused by internal characteristics of moderadaptive zoning and Shingled-Magnetic Recording tech-
disk and SSD drives. nologies p, 18, 33)).

(iv) Workload analysis (§4.2): Drive slowdowns are of-
ten blamed on unbalanced workloadsy, a drive is bus-
ier than others). Our findings refute this, showing that
more than 95% of slowdown periodannotbe attributed

to 1/O size or rate imbalance.

In summary, drive performance instability means theSSD: The pressure to increase flash density translates to
homogeneous performance assumption of traditionatore internal SSD complexities that can induce perfor-
RAID is no longer accurate. Drive slowdowns can mance instability. For example, SSD garbage collection,
appear at different times, persist, disappear, and recua well-known culprit, can increase latency by a factor
again. Their occurrence is “silent"—not accompaniedof 100 [1L3]. Programming MLC cells to different states
by observable drive event§4.3.1). Most importantly, (e.g, 0 vs. 3) may require different numbers of itera-
workload imbalance is not a major root cauge.f).  tions due to different voltage thresholdsl]. The notion
Replacing slow drives is not a popular solutigd .@¢.2  of “fast” and “slow” pages exists within an SSD; pro-
§4.4.3, mainly because slowdowns are often transientgramming a slow page can be 5-8x slower compared to
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Figure 1: Stable and slow drives in a RAID group.

Disk SSD
RAID groups 38,029 572
Data drives per group 3-26 3-22
Data drives 458,482 4,069
Duration (days) 1-1470 1-94
Drive hours 857,183,442| 7,481,055
Slow drive hours§4.1.7) 1,885,804 43,016
Slow drive hours (%) 0.22 0.58
RAID hours 72,046,373| 1,072,690
Tail hours §4.1.2 1,109,514 23,964
Tail hours (%) 1.54 2.23

Table 1: Dataset summary.

programming fast pag@f]. As device wears out, break-

(a) CDF of RAID Width (b) CDF of RAID Duration
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4 16 64 256 1024
RAID Dataset Duration (Days)

Figure 2: RAID width and dataset duration.

(same model, size, speed, etc.); deployment age can vary
but most of them are the same.

RAID and file system design: The RAID layer splits
each RAID request to per-drive I/Os. The size of a
per-drive 1/0O(a square block in Figuré) can vary from

4 to 256 KB; the storage stack breaks large 1/Os to
smaller I/Os with a maximum size of the processor cache
size. Above the RAID layer runs a proprietary file sys-
tem (not shown) that is highly tuned in a way that makes
most of the RAID I/O requests cover the full stripe; most
of the time the drives observe balanced workload.

RAID configuration: The RAID systems in our study
use small chunk sizeg g, 4 KB). More than 95% of the

down of gate oxide will allow charge moves across gateRAID groups use a custom version of RAID-6 where the

easily, resulting in faster programming (10-50%), but
also higher chance of corruptiofd]. ECC correction,

parity blocks are not rotated; the parity blocks live in two
separate drives (P and Q drives as shown in Figlire

read disturb, and read retry are also factors of instabilityl he other 4% use RAID-0 and 1% use RAID-4. We only

[19. Finally, SSD firmware bugs can cause significant
performance faults(g, 300% bandwidth degradation in
a Samsung firmware problemq)).

Although the facts and anecdotes above are crucial

select RAID groups that have at least three data drives
(D;..Dn whereN > 3 in Figurel), mainly to allow us
measure the relative slowdown compared to the median
latency. Our dataset contains RAID groups with 3-26
Idata drives per group. Figuga shows the RAID width

they do not provide empirical evidence that can gmdedistribution (only data drives); wide RAIDe(g, more

the design of future storage systems. The key questionﬂ:]

we raised in the introduction (slowdown magnitude, fre-
guency, scope, temporal behavior, root causes, impact
etc.) are still left unanswered. For this reason, we initi-
ated this large-scale study.

3 Methodology

In this section, we describe the RAID systems in our
study §3.1), the dataset§@.2), and the metrics we use
to investigate performance instability3(3). The overall
methodology is illustrated in Figure

3.1 RAID Architecture

RAID group: Figurel provides a simple illustration of
a RAID group. We study disk- and SSD-based RAID

an 8 data drives) is popular.

3.2 About the Dataset

Scale of datasetA summary of our dataset is shown in
Tablel. Our dataset contains 38,029 disk and 572 SSD
groups within deployment duration of 87 days on average
(Figure2b). This gives us 72 and 1 million disk and SSD
RAID hours to analyze respectively. When broken down
to individual drives, our dataset contains 458,482 disks
and 4069 SSDs. In total, we analyze 857 million and 7
million disk and SSD drive hours respectively.

Data collection: The performance and event logs we an-
alyze come from production systems at customer sites.
When the deployed RAID systems “call home”, an auto-
support system collectourly performance metricsuch

groups. In each group, disk or SSD devices are directlyas: average 1/O latency, average latency per block, and

attached to a proprietary RAID controller. All the disk

or SSD devices within a RAID group are homogeneousmetrics are collected at the RAID layer.

number of I/Os and blocks received every hour. All these
For each of
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Label | Definition toSlow
Measured metrics: .
h . normal slowPersist
N Number ofdatadrives in a RAID group
D; Drive number within a RAID group; = 1..N backToStable
L; Hourly average I/O latency observediat ) )
Derived metrics: Figure 3: Conceptual drive slowdown model.
Lied Median latencyLmecqa = Median of (L1..n)
Si Latency slowdown oD; compared to the median; plug/replug, etc.), which we correlate with slowdown
Si=Li/Lmea metrics to analyze root causes and impacts.
Tk The k-th largest slowdown §-th longest tail”);
T' = Maz of (S1.n), . .
T2 — 2nd Maz of (1. x), and 50 on 3.3.2 Derived Metrics
Stable | A stable drive hour is whef; < 2 . . . .
Slow A slow drive hour is whers; > 2 Slowdown (S;): To measure tail latencies, RAID is a
Tail A tail hour implies a RAID hour withT}, > 2 perfect target because it allows us to measure the relative

slowdown of a drive compared to the other drives in the
Table 2: Primary metrics. The table presents the metrics same group. Therefore, as illustrated in Figtyefor
used in our analysis. The distribution 8f is shown in Figure  every hour, we first measure the median group latency
2a. L;, S; andT* are explained in Sectio®.3. Lyeq from Ly and then measure the housglpwdown

of a drive (5;) by comparing its latency with the median

these metrics, the system separates read and write md@tency Ci/Lmnca). The total number of; is essentially
rics. In addition to performance information, the systemthe “#drive hours™ in Tablel. Our measurement &,
also records drive events such as response timeout, drivé 'éasonably accurate because most of the workload is

not spinning, unplug/replug events. balanced across the data drives and the average latencies
(L;) are based on per-drive 1/Os whose size variance is
3.3 Metrics small (se€3.1).

d%table vs. slow drive hours: Assuming that most

Below, we first describe the metrics that are measure ; . w
. orkload is balanced across all the data drives, a “sta-
by the RAID systems and recorded in the auto-support, ., . . .

le” drive should not be much slower than other drives.

system. Then, we present the metrics that we derive hus. we use a slowdown threshold 2 to differenti-

o messing ol tences (oo S9M O Mt s i howrs,  2) an stale b, < 2)

We believe 2x slowdown threshold is tolerant enough,
but conversations with several practitioners suggest that
a conservative 1.5x threshold will also be interesting.

Data drives (N): This symbol represents the number of Th_us, in some of our findings, we show additional results
data drives in a RAID group. Our study only includes USing 1.5x slowdown threshold.

data drives mainly because read operations only involve Conceptually, drives appear to behave similar to a sim-
data drives in our RAID-6 with non-rotating parity. Par- Ple Markov model in Figure. In a given hour, a drive

ity drives can be studied as well, but we leave that forcan be stable or slow. In the next hour, the drive can stay
future work. In terms of write operations, the RAID in the same or transition to the other condition.

small-write problem is negligible due to the file system 1,5 (T*): For every hourlyS; x, we derive thek-th
optimizations ¢3.1). largest slowdown represented &S. In this study, we

Per-drive hourly average 1/O latency (;): Of all the  only record the three largest slowdowfi8 (7% andT™).
metrics available from the auto-support system, we afl’ represents the “longest téih a given RAID hour, as
the end only use the hourly average I/O latenky) b- illustrated in Figurel. The total number of"! is the
served by every data drivdX) in every RAID group “#RAID hours” in Tablel. The differences among*
(:=1..N), as illustrated in Figurd. We initially ana- values will provide hints to the potential benefits of tail-
lyzed “throughput” metrics as well, but because the suptolerant RAID.

port system does not record per-10 throughput averagey,

) il hours: A “tail hour” implies a RAID hour that ob-
we cannot make an accurate throughput analysis base 1 .
) . Servesl’ >2 (i.e., the RAID group observes at least one
on hourly average I/O sizes and latencies.

slow drive in that hour). This metric is important for full-
Other metrics: We also use other metrics such as per-stripe balanced workload where the performance will
drive hourly average 1/O rately;) and size £;), time  follow the longest tail i(e., the entire RAID slows down
of day, drive age, model, and events (replacements, urat the rate ofl'").

3.3.1 Measured Metrics
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Figure 4: Slowdown (S;) and Tail (T'*) distributions
(84.1.1-84.1.2. The figures show distributions of disk (top)
and SSD (bottom) hourly slowdownS;), including the three
longest tails {1 ~%) as defined in Tabl€. The y-axis range
is different in each figure and the x-axis is in jogcale. We
plot two gray vertical lines representing 1.5x and 2x slowdo
thresholds. Important slowdown-percentile intersecti@me
listed in Tables.

Y: | 90" | 95|99 | 99.9 | 99.99 | 99.999
Slowdown 6;) at Yt" percentile
Disk | 1.1x | 1.2 | 1.4 2.7 9 30
(@ SSD| 1ix| 12| 17| 31 10 39
Greatest slowdowri(*) at Y*" percentile
Disk | 1.3x | 1.5 | 2.4 9 29 229
SSD| 1.3x | 15| 25 20 37 65
X | 12x|15x | 2x|  4x
Percentile atS; =X
Disk | 97.0" 99.3 | 99.78 | 99.96
() SSD| 959" | 98.7| 99.42 | 99.92
Percentile atl'* =X
Disk | 83.3" | 95.4 [ 98.50 [ 99.72
SSD | 87.0" | 95.2 | 97.77 | 99.67

Table 3: Slowdown and percentile intersections. The
table shows several detailed points in Figure Table (a) de-
tails slowdown values at specific percentiles. Table (bjitket
percentile values at specific slowdown ratios.

4.1.1 Slowdown ;) Distribution

We first take allS; values and plot their distribution as
shown by the thick (blue) line in Figuré (steeper lines
imply more stability). Table3 details some of the slow-
down and percentile intersections.

Finding #1: Storage performance instability is not un-
common. Figure4 and Table3b show that there exists
0.22% and 0.58% of drive hours (99'8&nd 99.4" per-
centiles) where some disks and SSDs exhibit at least 2x
slowdown 5; > 2). With a more conservative 1.5x slow-

From the above metrics, we can further measure Otheaown threshold, the percentiles are 99.8nd 98.7" for

metrics such as slowdown intervals, extents, and repegisk and SSD respectively. These observations imply
titions. Overall, we have performed an in-depth anal-y 4t yser demands of stable latencies at @gp@rcentile

ysis of all the measured and derived metrics. In many 15 46, 54] (or 99" with 1.5x threshold) are not met by
cases, due to space constraints, we aggregate some {&;rrent storage devices.

sults whenever the sub-analysis does not show different pisk and SSD slowdowns can be high in few cases.
behaviors. For example, we merge read and write slowap|e 35 shows that at four and five nines, slowdowns
downs as I/O slowdown. In some graphs, we break dowRgach>9x and>30x respectively. In some of the worst

the slowdownsé€.g, to 2-4x, 4-8x, 8-16x) if their char-
acterizations are different.

4 Results

We now present the results of our study in four set
of analysis: slowdown and tail distributions and char-
acteristics §4.1), correlations between slowdowns and
workload-related metricg4.2) and other available met-
rics (§4.3), and post-slowdown analysi$A(.4).

4.1 Slowdown Distributions and
Characteristics

In this section, we present slowdown and tail distribu-

cases, 3- and 4-digit disk slowdowns occurred in 2461
and 124 hours respectively, and 3-digit SSD slowdowns
in 10 hours.

4.1.2 Tail (T'*) Distribution

SWe next plot the distributions of the three longest tails

(T'~3) in Figure4. Table3 details severdl'! values at
specific percentiles.

Finding #2: Storage tails appear at a significant rate.
TheT" line in Figure4 shows that there are 1.54% and
2.23% “tail hours” (.e., RAID hours with at least one
slow drive). With a conservative 1.5x threshold, the per-
centiles are 95 and 95.2" for disk and SSD respec-
tively. These numbers are alarming for full-stripe work-

tions and their basic characteristics such as temporal béead because the whole RAID will appear to be slow if

haviors and the extent of the problem.

one drive is slow. For such workload, stable latencies at
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Figure 5: Temporal behavior (§4.1.3. The figures show Figure 6: Slowdown extent §4.1.4). Figure (a) shows
(a) the CDF of slowdown intervals (#hours until a slow drive the fraction of all drives that have experienced at least ooe
becomes stable) and (b) the CDF of slowdown inter-arrival currence ofX -time slowdown ratio as plotted on the x-axis; the
rates (#hours between two slowdown occurrences). y-axis is in logo scale. Figure (b) shows the fraction of slow

drives that has exhibited at least X slowdown occurrences.
99" percentile (or 98" with 1.5x threshold) cannot be

guaranteed by current RAID deployments. Next, we measure thiater-arrival period of slow-

The differences between the three longest tails sheOWn occurrences from the perspective of each slow
light on possible performance improvement from tail- drive. F|gure5b_ shoyvs_the fraction of slowdowr_1 occur-
tolerant RAID. If we reconstruct the late data from the 'eNces that arrive within X hours of the preceding slow-
slowest drive by reading from a parity drive, we can cutdown; the arrival rates are binned by hour.
the longest tail. This is under an assumption that drive Finding #5: Slowdown has a high temporal local-
slowdowns are independent and thus reading from th&- Figure 5b shows that 90% and 85% of disk and
parity drive can be faster. If two parity blocks are avail- SSD slowdown occurrences from the same drive happen
able €.g, in RAID-6), then tail-tolerant RAID can read within the same day of the previous occurrence respec-
two parity blocks to cut the last two tails. tively. The two findings above suggest that history-based

Finding #3: Tail-tolerant RAID has a significant po- @il mitigation strategies can be a fitting solution; a slow-
tential to increase performance stabilitghe ! and7 down occurrence should be leveraged as a good indicator

values at x=2 in Figuréia suggests the opportunity to for the possibility of near-future slowdowns.
reduce disk tail hours from 1.5% to 0.6% if the longest
tail can be cut, and furthermore to 0.3%7) if the two
longest tails can be cut. Similarly, Figuée shows that We now characterize th@lowdown extenti.e., fraction
SSD tail hours can be reduced from 2.2% to 1.4%, andf drives that have experienced slowdowns) in two ways.
furthermore to 0.8% with tail-tolerant RAID. First, Figure6a plots the fraction of all drives that have
exhibited at least one occurrence of at least X-time slow-
down ratio as plotted on the x-axis.
Finding #6: A large extent of drive population has ex-

fperienced slowdowns at different rat&$gureta depicts
hat 26% and 29% of disk and SSD drives have exhibited
—>2x slowdowns at least one time in their lifetimes re-

4.1.4 Slowdown Extent

TheT! line in Figure4b shows several vertical steps
(e.g, about 0.6% off'! values are exactly 2.0). To un-
derstand this, we analyZ% values that are exactly 1.5x,
2.0x, and 3.0x. We find that they account for 0.4% o
the entire SSD hours and their corresponding hourly an

median latenciesl(; and L,cq) are exactly multiples of = o1 " The fraction is also relatively significant for

250 us. We are currently investigating this further with large slowdowns. For example, 1.6% and 2.5% of disk

the product groups to understand why some of the de- : ;
ployed SSDs behave that way. and SSD populations have experiencekbx slowdowns

at least one time.

4.1.3 Temporal Behavior Next, we take only the population of slow drives (26%

To study slowdown temporal behaviors, we first measureand 29% of the disk and SSD population) and plot the
the slowdown intervalhow many consecutive hours a fraction of slow drives that has exhibited at least X slow-
slowdown persists). Figurga plots the distribution of down occurrences, as shown in Figéie
slowdown intervals. Finding #7: Few slow drives experience a large num-
Finding #4: Slowdown can persist over several hours. ber of slowdown repetitionskFigure 6b shows that that
Figure5a shows that 40% of slow disks do not go backaround 6% and 5% of slow disks and SSDs exhibit at
to stable within the next hour (and 35% for SSD). Fur-least 100 slowdown occurrences respectively. The ma-
thermore, slowdown can also persist for a long time. Foijority of slow drives only incur few slowdown repeti-
example, 13% and 3% of slow disks and SSDs stay slowions. For example, 62% and 70% of slow disks and
for 8 hours or more respectively. SSDs exhibit only less than 5 slowdown occurrences re-
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serves X times more 1/0Os. The figure reveals thially
5% of slow drive hours happen when the drive receives
2x more 1/Os than the peer drives. 95% of the slow-
downs happen in the absence of rate imbalance (the rate-
imbalance distribution is mostly aligned at x=1).

To strengthen our conjecture that rate imbalance is not
a factor, we perform a reverse analysis. To recap, Figure
7a essentially shows how often slowdowns are caused by
rate imbalance. We now ask the reverse: how often does
rate imbalance cause slowdowns? The answer is shown
in Figure 7b; it shows the slowdown distributionSy)
only within the population of “overly” rate-imbalanced
drive hours RI; > 2). Interestingly, rate imbalance has
negligible effect on slowdowns; only 1% and 5% of rate-
imbalanced disk and SSD hours experience slowdowns.
From these two analyses, we conclude that rate imbal-
ance is not a major root cause of slowdown.

Figure 7: CDF of size and rate imbalance §4.2). Fig-
ure (a) plots the rate imbalance distributiof®({;) within the
population of slow drive hoursS; > 2). A rate imbalance of X

4.2.2 Slowdown vs. Size Imbalance

Next, we correlate slowdown with size imbalance. Sim-
implies that the slow drive serves X times more 1/Os, asqalott ilar to the method above, we measure the hourly aver-
in the x-axis. Reversely, Figure (b) plots the slowdowrrithist ~ age 1/O size for every driveZ;), the median Z,,,.q),
tion (S;) within the population of rate-imbalanced drive hours and the size imbalanceZ(; = Z;/Z,..q). Figure7c
(RI; > 2). Figures (c) and (d) correlate slowdown and size plots the size imbalance distributioi {;) only within
imbalance in the same way as Figures (a) and (b). the population of slow drive hours. A size imbalance
of X implies that the slow drive serves X times larger
spectively_ We emphasize that frequency of slowdownl/O size. The size-imbalance distribution is very much
occurrences above amly within the time duration of aligned at x=1. Only 2.5% and 1.1% of slow disks and
87 days on averaggs3.?). SSDs receive 2x larger 1/O size than the peer drives in
their group. Reversely, Figurél shows that only 0.1%
4.2 Workload Analysis and 0.2% of size-imbalanced disk and SSD hours expe-
rience more than 2x slowdowns.
The previous section presents the basic characteristics Finding #8: Slowdowns are independent of 1/O rate
of drive slowdowns. We now explore the possible rootand size imbalanceAs elaborated above, the large ma-
causes, starting with workload analysis. Drive slow-jority of slowdown occurrences (more than 95%) cannot

downs are often attributed to unbalanced worklaad{  pe attributed to workload (1/O size or rate) imbalance.
a drive is busier than other drives). We had a hypothesis

that such. is. not the case in our study due to the_ storagg 3 Other Correlations

stack optimizationq3.2). To explore our hypothesis, we

correlate slowdown with two workload-related metrics: As workload imbalance is not a major root cause of

size and rate imbalance. slowdowns, we now attempt to find other possible root
causes by correlating slowdowns with other metrics such

4.2.1 Slowdown vs. Rate Imbalance as drive events, age, model and time of day.

We first measure the hourly 1/0 count for every drive4 31 Drive Event
(R;), the medianR,,..q), and the rate imbalanc&(; = "
R;/Rmneq); this method is similar to the way we measure Slowdown is often considered as a “silent” fault that
S; in Table2. If workload is to blame for slowdowns, needs to be monitored continuously. Thus, we ask: are
then we should observe a high correlation between slowthere anyexplicitevents surfacing near slowdown occur-
down (S;) and rate imbalanceR;). That is, slowdowns rences? To answer this, we collgcive event§rom our
happen in conjunction with rate imbalance, for example auto-support system.
S; > 2 happens during; > 2. Finding #9: Slowdown is a “silent” performance
Figure7a shows the rate imbalance distributidd/f)  fault. A large majority of slowdowns are not accom-
only withinthe population of slow drive hours. A rate im- panied with any explicit drive events. Out of the mil-
balance of X (on the x-axis) implies that the slow drive lions slow drive hours, we only observe hundreds of
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(a) CDF of Slowdown vs. Drive Age (Disk) (b) CDF of Slowdown vs. Drive Age (SSD) CDF of Slowdown vs. SSD Model
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Figure 8: Drive age §4.3.2. The figures plot the slow- %9 2 3 4
down distribution across different (a) disk and (b) SSD ages Slowdown Ratio

Each line represents a specific age by year. Each figure legen

is sorted from the left-most to right-most lines. ?—'igure 9: SSD models§4.3.3. The figure plots the slow-

down distribution across different SSD models and vendors.

drive events. However, when specific drive events hap- o o .

pen (specifically, “disk is not spinning” and “disk is not Only 796 and _86@ of customer dIS.kS. and_ SSDS. ha_ve
responding”), 90% of the cases lead to slowdown occurmc’del mforma_\tlon. Thus, our analysis in this section is

rences. We rarely see storage timeoatg{SCSI time- based on partlal popula’gon.

out) because timeout values are typically set coarsely We begin by correlating SSD model and slowdown.

be five orders of magnitude to hit a timeout. Thus, to deJnduce pe_rformance _instability. Thus, it is interesting to

tect tail latencies, storage performance should be moninow the impact of different flash cell levels to SSD per-

tored continuously. formance stability.
Finding #11: SLC slightly outperforms MLC drives in
4.3.2 Drive Age terms of performance stabilityAs shown in Figured,

Next, we analyze if drive age matters to performanceat 1.5x slowdown threshold, MLC drives only reaches

Py : ) .
stability. We break the the slowdown distributiofi;) a&z percer‘z“'e l""h'('je SLChreaﬁhﬁf 9h975§_er9f)”“_'e' _
by different agesi(e., how long the drive has been de- OWEVET at 2x slowdown threshold, the distribution is

ployed) as shown in Figure only separated by 0.1%. As MLC exhibits less perfor-
For disks, the bold lines in Figufa clearly show that mance stability than SLC, future comparisons with TLC

. . . drives will be interesting.
older disks experience more slowdowns. Interestingly, 9

the population of older disks is small in our dataset and Our dataset contains about 60:40 ratio of SLC vs.
yet we can easily observe slowdown prevalence withifMLC drives. All the SLC drives come from one vendor,
this small population (the population of 6-10 year-old but the MLC drives come from two vendors with 90:10
disks ranges from 0.02-3% while 1-5 year-old diskspopulation ratio. This allows us to compare vendors.
ranges from 8-33%). In the worst case, the 8th year, the Finding #12: SSD vendors seem to matt&s shown
95" percentile already reaches 2.3x slowdown. The 9thpy the two thin lines in Figuré, one of the vendors (the
year (0.11% of the population) seems to be an outlier10% MLC population) has much less stability compared
Performance instability from disk aging due to mechani-to the other one. This is interesting because the insta-
cal wear-out is a possibility§@). bility is clearly observable even within a small popula-
For SSD, we do not observe a clear pattern. Althoughion. At 1.5x threshold, this vendor’s MLC drives already

Figure8b seemingly shows that young SSDs experiencgeach 94.8'percentile (out of the scope of Figu@p
more slowdowns than older drives, it is hard to make

such as a conclusion because of the small old-SSD popu- For disks, We use different model parameters such as
lation (3-4 year-old SSDs only make up 16% of the pop_storage capacity, RPM, and SAN interfaces (SATA, SAS,
ulation while the 1-2 year-old is 83%). or Fibre Channel). However, we do not see any strong

Finding #10: Older disks tend to exhibit more slow- correlation.
downs. For SSDs, no high degree of correlation can be ,
made between slowdown and drive age. 4.3.4 Time of Day
. We also perform an analysis based on time of day to iden-
4.3.3 Drive Model tify if night-time background jobs such as disk scrubbing
We now correlate slowdown with drive model. Not all of cause slowdowns. We find that slowdowns are uniformly
our customers upload the model of the drives they usedistributed throughout the day and night.



0.9

0.8

0.7

Appears in the Proceedings of the 14th USENIX Conferencelemird Storage Technologies (FAST '16)

(a) CDF of RIO Degradation (Disk) (b) CDF of RIO Degradation (SSD) (a) CDF of Wait-Hour (Disk) (b) CDF of Wait-Hour (SSD)
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4.4 Post-Slowdown Analysis o
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We now perform a post-mortem analysis: what hap; == ol”
pensafter slowdown occurrences? We analyze this from* 4 6 64 256 10241 2 4 8 16 82 04128256512
two angles: RAID performance degradation and un-

plug/replug events.

Figure 11: Unplug/replug events §4.4.2584.4.3. The
figures show the relationships between slowdown occurgence

4.4.1 RAID Performance Degradation and unplug/replug events. The top and bottom figures show the

. . distribution of “wait-hour” and “recur-hour” respectivey.
A slow drive has the potential to degrade the performance P o

of the entire RAID, especially for full-stripe workload .
common in the studied RAID systenf3(1), it is reason- example shows that only 12% of stable-to-stable transi-
able to make the following hypothesis: during the hourtions observe>2x RIO degradation (likely from work-

when a drive slows down, the RAID aggregate through-/0ad cooling do(\)/vn). However, in stable-to-slow trfmsi-
put will drop as the workload’s intensity will be throttled tONS, there i23% more chancghe vertical gap at x=2)

by the slow drive. Currently, we do not have access tdhat RIO degrades by more than 2x. In disk-based RAID,
throughput metrics at the file system or application lev-RIO degradation is also felt with 7% more chance. This
els, and even if we do, connecting metrics from differentf'nd'”g shows the real pOSSIbI|ItIe.S of wo_rkload throu_gh—
levels will not be trivial. We leave cross-level analysis PUtP€ing degraded and stable drives being under-utilized
as future work, but meanwhile, given this constraint, weduring tail hours, which again motivates the need for tail-

perform the following analysis to explore our hypothesis. folerant RAID.

We derive a new metri®®10 (hourly RAID 1/0 count) We note that RAID degradation is felt more if user re-
which is the aggregate number of 1/Os per hour from allduests are casually dependent; RIO degradation only af-

the data drives in every RAID hour. Then, we derive fects I/Os that are waiting for the completion of previous

RIO degradatior(RAID throughput degradation) as the I/0s. Furthermore, since our dataset is based on hourly
Tatio RIOu.:srowr 10 RIOuurrentHour- If the degradation  @verage latencies, there is no sufficient information that

is larger than one, it means the RAID group serves les§hoWs every I/O is delayed at the same slowdown rate.

I/Os than the previous hour. We believe these are the reasons_why we do not see a
Next, we distinguisistable-to-stablendstable-to-tail  cOMPplete collapse of RIO degradation.

transitions. Stable RAID hour means all the drives are, , 5 Unplug Events

stable §i < 2). Tail RAID hour implies at least one of

the drives is slow. In stable-to-stable transitions, RIOWhen a drive slows down, the administrator might un-

degradation can naturally happen as workload “coolglug the drive é.g, for offline diagnosis) and later replug

down”. Thus, we first plot the distribution of stable-to- the drive. Unplug/replug is a manual administrator’s pro-

stable RIO degradation, shown by the solid blue line incess, but such events are logged in our auto-support sys-

Figure10. We then select only the stable-to-tail transi- tem. To analyze unplug patterns, we defimait-hour

tions and plot the RIO degradation distribution, shownas the number of hours between a slowdown occurrence

by the dashed red line in Figute. and a subsequent unplug event; if a slowdown persists
Finding #13: A slow drive can significantly degrade in consecutive hours, we only take the first slow hour.

the performance of the entire RAIPigure 10 depicts  Figureslla-b show the wait-hour distribution within the

a big gap of RAID I/O degradation between stable-to-population of slow disks and SSDs respectively.

stable and stable-to-tail transitions. In SSD-based RAID, Finding #14: Unplug events are commonFigures

the degradation impact is quite severe. Figltb for  1l1a-b show that within a day, around 4% and 8% of slow
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(>2x) disks and SSDs are unplugged respectively. Fob Tail-Tolerant RAID

“mild” slowd 1.5-2x), th b 3%and 6%. . . . -
mild” slowdowns ( X), the numbers are 3% an > With drive performance instability, RAID performance

Figure 11a also shows a pattern where disks with more, " . . )
s in jeopardy. When a request is striped across many

severe slowdowns are unplugged at higher rates; this pal[— . o . L
tern does not show up in SSD. drives, the request cannot finish until all the individual

I/0s complete (Figuré); the request latency will follow
the tail latency. As request throughput degrades, stable
4.4.3 Replug Events drives become under-utilized. Tail-tolerant RAID is one

] ) ) solution to the problem and it brings two advantages.
We first would like to note that unplug is not the same First, slow drives are masked. This is a simple goal

as drive replacement; a replacement implies an unplugt crycial for several reasons: stringent SLOs require
without replug. With this, we raise two questions: What stability at high percentilese(g, 99% or even 99.9%
is the replug rate? Do replugged drives exhibit fur—[15’ 45, 48, 52)); slow drives, if not masked, can cre-
ther slowdowns? To analyze the latter, we defe®ir- 516 cascades of performance failures to applicatipéis [
hour as the number of hours between a replug evenng grive slowdowns can falsely signal applications to
and the next slowdown occurrence. Figuiés-d show  paci off, especially in systems that treat slowdowns as
th_e recur-hour dlstrlbuuo_n within the population of slow phints of overload$4].
disks and SSDs respectively. Second, tail-tolerant RAID is a cheaper solution than
Finding #15: Replug rate is high and slowdowns still drive replacements, especially in the context of transient
recur after replug eventsin our dataset, customers re- slowdowns §4.1.3 and high replug rates by administra-
plug 89% and 100% of disks and SSDs that they untors §4.4.9. Unnecessary replacements might be unde-
plugged respectively (not shown in figures). Figuressirable due to the hardware cost and the expensive RAID
11c-d answer the second question, showing that 18%e-building process as as drive capacity increases.
and 35% of replugged disks and SSDs exhibit another Given these advantages, we performed an opportu-
slowdown within a day. This finding points out that nity assessment of tail-tolerant strategies at the RAID
administrators are reluctant to completely replace slowevel. We emphasize that the main focus of this paper
drives, likely because slowdowns are transient (not alis the large-scale analysis of storage tails; the initial ex

slowdowns appear in consecutive hours) and thus carploration of tail-tolerant RAID in this section is only to
not be reproduced in offline diagnosis and furthermoreassess the benefits of such an approach.

the cost of drive replacement can be unnecessarily ex-
pensive. Yet, as slowdown can recur, there is a need fdb.1  Tail-Tolerant Strategies

online tail mitigation approaches. . . .
) We explore three tail-tolerant strategiesactive proac-
In terms of unplug-replug duration, 54% of unpluggedtive’ andadaptive They are analogous to popular ap-

disks are replugged within 2 hours and 90% within 1055ches in parallel distributed computing such as spec-
hours. _Fc_)r SSD, 61% are replugged within 2 hours anq,5tive execution 14] and hedging/cloningd, 13. To
97% within 10 hours. mimic our RAID systems§3.2), we currently focus on
tail tolerance for RAID-6 withnon-rotatingparity (Fig-
urel and§3.1). We name our prototype ToleRAID, for
simplicity of reference.

Currently, we only focus on full-stripe read workload
where ToleRAID can cut “read tails” in the following
‘ways. In normal reads, the two parity drives are unused
(if no errors), and thus can be leveraged to mask up to
two slow data drives. For example, if one data drive is
slow, ToleRAID can issue an extra read to one parity
éirive and rebuild the “late” data.

4.5 Summary

It is now evident that storage performance instability at
the drive level is not uncommon. One of our major find-
ings is the little correlation between performance insta
bility and workload imbalance. One major analysis chal-
lenge is the “silent” nature of slowdowns; they are not
accompanied by explicit drive events, and therefore, pin
pointing the root cause of each slowdown occurrence i
still an open problem. However, in terms of the over- Reactive: A simple strategy is reactive. If a drive
all findings, our conversations with product teams and(or two) has not returned the data f8f'x (slowdown
vendors fl] confirm that many instances of drive perfor- threshold) longer than the median latency, reactive will
mance faults are caused by drive anomalies; there angerform an extra read (or two) to the parity drive(s). Re-
strong connections between our findings and some of thactive strategy should be enabled by default in order to
anecdotal evidence we gathergd)( As RAID deploy-  cut extremely long tails. It is also good for mostly stable
ments can suffer from storage tails, we next discuss thenvironmentwhere slowdowns are rare. A snsallwill
concept of tail-tolerant RAID. create more extra reads and a lagje will respond late

10
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to tails. We sefST = 2 in our evaluation, which means (a) CDF of RAID Slowdown (w/ "Rare") (b) CDF of RAID Slowdown (w/ "Periodic")
we still need to wait for roughly an additional 1x median * !
latency to complete the I/O (a total slowdown of 3x impes
our case). While reactive strategies work well in cIusO-9
ter computing €.g, speculative execution for medium-"

0.8

Proactive 2 s
Proactive 1

roactive 2
Proactive 1

long jobs), they can react too late for small I/O latenciess Adaptive - = = 1o Adaplive = - -
(e.g, hundreds of microseconds). Therefore, we explogg, | No policy No policy

. . T 2 4 8 1 2 4
proactlve and adaptlve approaches. Slowdown Ratio Slowdown Ratio

Proactive: This approach performs extra reads to the _ _ i .
parity drives concurrently with the original 1/0Os. The I:gure 12'd ToIeIR;AID eva_lrlulagc');:b The f|gul;es sdhow
number of extra reads can be one (P drive) or two (F‘ € pros and cons of various fole strategies based on two
. slowdown distributions: (a) Rare and (b) Periodic. The figgur
and Q); we name themROACTIVE; and PROACTIVE; 1o 1
. . . plot theT" distribution (i.e., the RAID slowdown)I"" is es-
respectively. Proactive works well to cut short tails (near. . .
the slowd threshold): di d ab i sentially based on the longest tail latency among the nacgss
e slowdown threshold); a_s Isgusse above, reac IVglocks that each policy needs to wait for.
depends o7 and can be a little bit too late. The down-

side of proactive strategy is the extra read traffic. .
P 9y long tails and ensure RAID only slows down by at most

Adaptive: This approach is a middle point between the 3x, while only introducing 0.5% I/O overheadROAG-

two strategies above. Adaptive by default runs the re-rjve,, compared tcPROACTIVE;, gives slight benefits
active approach. When the reactive policy is triggerede.g, 1.8x vs. 2.3x at 99 percentile). Note also that
repeatedly folS R times (slowdown repeats) on the same proacTIVE, does not USREACTIVE, and thusPROAG-
drive, then ToleRAID becomes proactive until the slow- 1\vg, loses toREACTIVE within the 0.1% chance where
down of the offending drive is less tha#il’. If two  two disks are slow at the same tim@aDAPTIVE does
drives are persistently slow, then ToleRAID rifBOAC-  not show more benefits in non-persistent scenarios. Fig-
TIVE2. Adaptive is appropriate for instability that comes yre12b shows that in periodic distribution with persistent

from persistent and periodic interferences such as backslowdowns AbAPTIVE works best; it cuts long tails but
ground SSD GC, SMR log cleaning, or I/O contention only incurs 2.3% 1/O overhead.

from multi-tenancy. Overall, ToleRAID shows potential benefits. In sepa-
) rate experiments, we have also measured Linux Software
5.2 Evaluation RAID degradation in the presence of storage tails (with

Our user-level ToleRAID prototype stripes each RAID dnsetup delay utilities). We are integrating ToleRAID
request into 4-KB chunkg8.2), merge consecutive per- to Iflr_1ux Software RAID and_ extending |'F to cover more
drive chunks, and submit them as direct 1/0s. We in-Policies and scenarios (partial reads, writes, etc.).

sert a delay-injection layer that emulates 1/0 slowdowns. . )

Our prototype takes two inputs: block-level trace and6  DIScussions

slowdown distribution. Below, we show ToleRAID re- . . .

sults from running a block trace from Hadoop Word- We hope our work will spur a set of interesting fut_ure
count benchmark, which contains mostly big reads. We(esearch dlrect_lons for t_hg larger storage community to
perform the experiments on 8-drive RAID running IBM address. We d|scu_ss t_h|s n the context of performance-
500GB SATA-600 7.2K disk drives. log analysis and tail mitigations.

We use two slowdown distributions: (Raredistribu-  Enhanced data collection: The first limitation of our
tion, which is uniformly sampled from our disk dataset dataset is the hourly aggregation, preventing us from
(Figure4a). Here, tailsT") are rare (1.5%) but long tails performing micro analysis. Monitoring and capturing
exist (Table3). (2) Periodic distribution, based on our fine-grained data points will incur high computation and
study of Amazon EC2 ephemeral SSDs (not shown duetorage overhead. However, during problematic peri-
to space constraints). In this study, we rent SSD nodeeds, future monitoring systems should capture detailed
and found a case where one of the locally-attached SSDdata. Our ToleRAID evaluation hints that realistic slow-
periodically exhibited 5x read slowdowns that lasted fordown distributions are a crucial element in benchmark-
3-6 minutes and repeated every 2-3 hours (2.3% instabiling tail-tolerant policies. More distribution benchmarks
ity period on average). are needed to shape the tail-tolerant RAID research area.

Figure12 shows the pros and cons of the four policies The second limitation is the absence of other metrics that
using the two different distributions. In all casegoAc can be linked to slowdown®(g, heat and vibration lev-
TIVE; andPROACTIVE; always incur roughly 16.7% and els). Similarly, future monitoring systems can include
33.3% extra reads. In Figur2a, REACTIVE can cut  such metrics.

11
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Our current SSD dataset is two orders of magnitude Krevat et al. [33] demonstrate that disks are like
smaller than the disk dataset. As SSD becomes thé&snowflakes” (same model can have 5-14% throughput
front-end storage in datacenters, larger and longer studsariance); they only analyze throughput metrics on 70
ies of SSD performance instability is needed. Similarly,drives with simple microbenchmarks. To the best of our
denser SMR disk drives will replace old generation disksknowledge, our work is the first to conduct a large-scale
[5, 18]. Performance studies of SSD-based and SMR-performance instability analysis at the drive level.
based RAID will be valuable, especially for understand- Storage performance variability is typically addressed
ing the ramifications of internal SSD garbage-collectionin the context of storage Qo8.¢, mClock [25], PARDA
and SMR cleaning to the overall RAID performance. [24], Pisces §2]) and more recently in cloud storage ser-

. vices €.g, C3 [45], CosTLO pZ]). Other recent work
Further analyses: Correlating slowdowns to latent sec- .,/ ,ces performance variability at the file systesry(

tor errors, corruptions, drive failures.@, from SMART Chopper B0)), /0 scheduler ¢.g, split-level schedul-
logs), and application performance would be interestinq 5 d SSD | P itv 1171, Flash
future work. One challenge we had was that not all ven.9 [59]), an ayerseg, Purity [12, Flash on

q . | SMART and ar : Rails [43]). Different than ours, these sets of work do
ors consistently use and report drive errors. In, specifically target drive-level tail latencies.

this paper, we use mgdian values to measure tail laten- Finally, as mentioned before, reactive, proactive and
cies and slowdowns s_|m|lar tq other Work:_:{ 34, 52]' adaptive tail-tolerant strategies are lessons learned fro
we d(_) S0 because_ using medlan \_/alu_es will not h'?'e th‘?he distributed cluster computing.g, MapReducel4],
severity of long tails. Using median is exaggerating 'fdolly [6], Mantri [7], KMN [50]) and distributed storage
(N-1)/2 of the drives have significantly higher latendessystemse 9. Windows Azure Storages[l], RobuSTore

th_an the rest, _however, we did not observe such Casef53]). The applications of these high-level strategies in
Finally, we mainly use 2x slowdown threshold, and OC-the context of RAID will significantly differ

casionally show results from a more conservative 1.5x
threshold. Further analyses based on average latency valy .
ues and different threshold levels are possible. aé Conclusion

Tail mitigations: We believe the design space of tail- We hav_e “traf‘?fofmed" anecdotes of storage. perfor-
tolerant RAID is vast considering different forms of mance mstgblllty mtp large-scale empirical ewdenc_e.
RAID (RAID-5/6/10, etc.), different types of erasure Our analysis so far is solely based on last generation

coding [39], various slowdown distributions in the field, drives (few years in deployment). With trends in disk and

and diverse user SLA expectations. In our initial assess—SSD technologyd.g, SMR disks, TLC flash devices),

ment, ToleRAID uses a black-box approach, but therdhe worst might be yet to come; performance_ins_tability
are other opportunities to cut tails “at the source” with " be more prevaler_1t n the fL_Jture, and our findings are
transparent interactions between devices and the Rralperhaps just the beginning. File and RAID systems are

layer. In special cases such as materials trapped betwe w faced with more responsibilities. Not only must they
disk head and platter (which will be more prevalent in andle known storage faults such as latent sector errors

“slim” drives with low heights), the file system or RAID and corr_uptlo_nsq, 27’. 28,39, but also now they must
layer can inject random I/Os to “sweep” the dust off. In mask drive tail latencies as well. Lessons can be learned

summary, each root cause can be mitigated with specifitgom the distributed computing commupitywhere a large
strategies. The process of identifying all possible roo ody of work has been born since the issue of tail laten-

causes of performance instability should be continued foﬁ'es b‘(‘acame. a spothgtlt a decade a];].zt}..[S|m|IarIy, we
future mitigation designs. ope “the tail at store” will spur exciting new research

directions within the storage community.
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