
Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs

in Datacenter Distributed Systems

Tanakorn Leesatapornwongsa

University of Chicago

tanakorn@cs.uchicago.edu

Jeffrey F. Lukman

Surya University

lukman@cs.uchicago.edu

Shan Lu

University of Chicago

shanlu@uchicago.edu

Haryadi S. Gunawi

University of Chicago

haryadi@cs.uchicago.edu

Abstract

We present TaxDC, the largest and most comprehensive

taxonomy of non-deterministic concurrency bugs in dis-

tributed systems. We study 104 distributed concurrency (DC)

bugs from four widely-deployed cloud-scale datacenter dis-

tributed systems, Cassandra, Hadoop MapReduce, HBase

and ZooKeeper. We study DC-bug characteristics along sev-

eral axes of analysis such as the triggering timing condition

and input preconditions, error and failure symptoms, and fix

strategies, collectively stored as 2,083 classification labels

in TaxDC database. We discuss how our study can open up

many new research directions in combating DC bugs.

Categories and Subject Descriptors D.2.5 [Testing and

Debugging]: Diagnostics

Keywords Concurrency bugs, distributed systems, soft-

ware testing

1. Introduction

“Do we have to rethink this entire [HBase] root and meta

’huh hah’? There isn’t a week going by without some new

bugs about races between splitting and assignment

[distributed protocols].” — h4397

Software systems are getting more complex and new in-

tricate bugs continue to appear, causing billions of dollars

in economic loss. One notorious type of software bugs is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’16, April 02 - 06, 2016, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4091-5/16/04. . . $15.00.
http://dx.doi.org/10.1145/2872362.2872374

concurrency bugs. These timing-related bugs manifest non-

deterministically, and hence are extremely difficult to detect,

diagnose, and fix. A huge body of work exists in this space

that focuses on “local” concurrency (LC) bugs in single-

machine multi-threaded software, caused by incorrect inter-

leaving of memory accesses.

Today, beyond single-machine software, distributed soft-

ware infrastructures have become a dominant backbone for

cloud computing and modern applications. Large-scale dis-

tributed systems such as scalable computing frameworks [4,

14], storage systems [3, 6, 11, 15], synchronization [7, 10]

and cluster management services [5, 29] have emerged as

the datacenter operating system. Increasing numbers of de-

velopers write large-scale distributed systems and billions of

end users rely on the reliability of these systems.

Unfortunately, the reliability of datacenter distributed

systems is severely threatened by non-deterministic con-

currency bugs as well, which we refer as distributed concur-

rency (DC) bugs. Distributed systems execute many compli-

cated distributed protocols on hundreds/thousands of ma-

chines with no common clocks, and must face a variety

of random hardware failures [17, 25]. This combination

makes distributed systems prone to DC bugs caused by non-

deterministic timing of distributed events such as message

arrivals, node crashes, reboots, and timeouts. These DC bugs

cannot be directly tackled by LC bug techniques, and they

cause fatal implications such as operation failures, down-

times, data loss and inconsistencies.

Fighting DC bugs is challenging, particularly given the

preliminary understanding of real-world DC bugs. To make

progress, we believe a comprehensive bug study is needed.

Past studies have closely examined bugs in various soft-

ware systems [12, 44, 50], which have motivated and guided

many aspects of reliability research. There are few bug stud-

ies on large-scale distributed systems [25, 39], but they did

not specifically dissect DC bugs. One recent paper ana-

1

http://issues.apache.org/jira/browse/HBASE-4397

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

lyzed non-determinism in MapReduce programs but only

discussed five bugs [64]. Thorough studies have also been

conducted for LC bugs [21, 45] with many follow-up work

to date. To the best of our knowledge, there is no compre-

hensive study on real-world distributed concurrency bugs.

A comprehensive study on real-world DC bugs relies on

three key ingredients: detailed bug descriptions by users and

developers, open access to source code and patches, and per-

vasive documentation of the studied systems. Although DC

bugs theoretically have existed for decades, all the key ingre-

dients were never aligned, causing the lack of comprehen-

sive DC bug studies. There were only a few popular open-

source distributed systems [1, 37, 60], and they do not docu-

ment bugs in detail. There were a few bug detection and di-

agnosis papers that discussed DC bugs in real-world propri-

etary systems [26, 42, 43, 55, 65], but the number of reported

bugs is too few for a comprehensive study and they do not

release source code and patches. Fortunately, in the advent of

open-source cloud computing, many of today’s popular dat-

acenter distributed systems provide all the key ingredients.

1.1 TaxDC

This paper presents our in-depth analysis of 104 DC bugs.

We believe our study is the largest and most comprehen-

sive to date for DC bugs. The bugs came from four popu-

lar datacenter distributed systems: Cassandra [3], HBase [6],

Hadoop MapReduce [4], and ZooKeeper [7]. We introduce

TaxDC, a comprehensive taxonomy of real-world DC bugs

across several axes of analysis such as the triggering timing

condition and input preconditions, error and failure symp-

toms, and fix strategies, as shown in detail in Table 1. The

results of our study are stored in the form of 2,083 classifi-

cation labels in TaxDC database [2].

As our main contribution, TaxDC will be the first large-

scale DC-bug benchmark. In the last five years, bug bench-

marks for LC bugs have been released [32, 66], but no large-

scale benchmarks exist for DC bugs. Researchers who want

to evaluate the effectiveness of existing or new tools in com-

bating DC bugs do not have a benchmark reference. TaxDC

provides researchers with more than 100 thoroughly taxon-

omized DC bugs to choose from. Practitioners can also use

TaxDC to check whether their systems have similar bugs.

The DC bugs we studied are considerably general, represent-

ing bugs in popular types of distributed systems.

As a side contribution, TaxDC can help open up new

research directions. In the past, the lack of understanding

of real-world DC bugs has hindered researchers to inno-

vate new ways to combat DC bugs. The state of the art

focuses on three lines of research: monitoring and post-

mortem debugging [22, 42, 43, 55], testing and model check-

ing [26, 37, 38, 59, 65], and verifiable language frameworks

[16, 63]. We hope our study will not only improve these lines

of research, but also inspire new research in bug detection

tool design, runtime prevention, and bug fixing, as elabo-

rated more in Section 8.

1.2 Summary of Findings

While we provide detailed findings throughout the paper, we

first summarize findings on the intricacies of DC bugs:

• Throughout the development of our target systems, new

DC bugs continue to surface. Although these systems are

popular, there is a lack of effective testing, verification, and

analysis tools to detect DC bugs prior to deployment.

• Real-world DC bugs are hard to find because many of them

linger in complex concurrent executions of multiple proto-

cols. Complete systems contain many background and oper-

ational protocols beyond user-facing foreground protocols.

Their concurrent interactions can be deadly.

• 63% of DC bugs surface in the presence of hardware faults

such as machine crashes (and reboots), network delay and

partition (timeouts), and disk errors. As faults happen, re-

covery protocols create more non-deterministic events con-

current with ongoing operations.

• 47% of DC bugs lead to silent failures and hence are hard

to debug in production and reproduce offline.

Nevertheless, through a careful and detailed study of each

bug, our results also bring fresh and positive insights:

• More than 60% of DC bugs are triggered by a single

untimely message delivery that commits order violation or

atomicity violation, with regard to other messages or com-

putation. This finding motivates DC bug detection to focus

on timing-specification inference and violation detection;

it provides simple program-invariant and failure-predictor

templates for DC bug detection, failure diagnosis, and run-

time prevention.

• 53% of DC bugs lead to explicit local or global errors. This

finding motivates inferring timing specifications based on

local correctness specifications, in the form of error checking

already provided by developers.

• Most DC bugs are fixed through a small set of strategies.

30% are fixed by prohibiting the triggering timing and an-

other 40% by simply delaying or ignoring the untimely mes-

sage, or accepting it without introducing new handling logic.

This finding implies unique research opportunities for auto-

mated in-production fixing for DC bugs.

• Many other observations are made that enable us to an-

alyze the gap between state-of-the-art tools and real-world

DC bugs as well as between research in LC and DC bugs.

In the following sections, we first present our methodol-

ogy (§2) and then our DC taxonomy (§3-§7). Note that these

sections only present the taxonomy, illustrations, examples,

and statistics. Later, Section §8 discusses the lessons learned

wherein we will connect our findings with the implications

to existing tools and opportunities for new research in com-

bating DC bugs. We do not have an exclusive section for

related work as we discuss them throughout the paper.

2

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

2. Methodology

2.1 Basic Definitions

A distributed concurrency (DC) bug is a concurrency bug

in distributed systems caused by distributed events that can

occur in non-deterministic order. An event can be a message

arrival/sending, local computation, fault, and reboot. A local

concurrency (LC) bug is a concurrency bug that happens lo-

cally within a node due to thread interleaving. In our model,

a distributed system is a collection of shared-nothing nodes.

Each node can run multiple protocols in multiple threads.

2.2 Target Systems and Dataset

Our study examined bugs from four widely-deployed open-

source datacenter distributed systems that represent a di-

verse set of system architectures: Hadoop MapReduce (in-

cluding Yarn) [4] representing distributed computing frame-

works, HBase [6] and Cassandra [3] representing distributed

key-value stores (also known as NoSQL systems), and

ZooKeeper [7] representing synchronization services. They

are all fully complete systems containing many complex

concurrent protocols. Throughout the paper, we will present

short examples of DC bugs in these systems. Some detailed

examples are illustrated in Figure 2, 4 and 5.

The development projects of our target systems are all

hosted under Apache Software Foundation wherein orga-

nized issue repositories (named “JIRA”) are maintained. To

date, across the four systems, there are over 30,000 issues

submitted. One major challenge is that issues pertaining to

DC bugs do not always contain plain terms such as “con-

currency”, “race”, “atomicity”, etc. Scanning all the issues

is a daunting task. Thus, we started our study from an open

source cloud bug study (CBS) database [2], which already

labels issues related to concurrency bugs. However, beyond

simple labeling, the CBS work did not differentiate DC from

LC bugs and did not dissect DC bugs further.

From CBS, we first filtered out LC bugs, then exclude

DC bugs that do not contain clear description, and finally

randomly picked 104 samples from the remaining detailed

DC bugs, specifically 19 Cassandra, 30 HBase, 36 Hadoop

MapReduce, and 19 ZooKeeper DC bugs, reported in Jan-

uary 2011-2014 (the time range of CBS work). We have seen

much fewer clearly explained DC bugs in CBS from Cas-

sandra and ZooKeeper than those from HBase and Hadoop

MapReduce, which may be related to the fact that they

are different types of distributed systems. For example,

ZooKeeper, as a synchronization service, is quite robust as

it is built on the assumption of event asynchrony since day

one. Cassandra was built on eventual consistency, and thus

did not have many complex transactions, until recently when

Cassandra adopts Paxos. We still see new DC bugs through-

out 2014-2015 (some pointed to us by the developers); they

can be included into TaxDC in the future.

Triggering (§3)

What is the triggering timing condition?

Message arrives unexpectedly late/early

Message arrives unexpectedly in the middle

Fault (component failures) at an unexpected state
Reboot at an unexpected state

What are the triggering inputs preconditions?

Fault, reboot, timeout, background protocols, and others

What is the triggering scope?

How many nodes/messages/protocols are involved?

Errors & Failures (§4)

What is the error symptom?

Local memory exceptions

Local semantic error messages & exceptions

Local hang

Local silent errors (inconsistent local states)

Global missing messages

Global unexpected messages
Global silent errors (inconsistent global states)

What is the failure symptom?

Node downtimes, data loss/corruption, operation failures, slowdowns

Fixing (§5)

What is the fix strategy?

Fix Timing: add global synchronization

Fix Timing: add local synchronization

Fix Handling: retry message handling at a later time

Fix Handling: ignore a message

Fix Handling: accepting a message without new computation logics

Fix Handling: others

Table 1. Taxonomy of DC Bugs.

2.3 Taxonomy

We study the characteristics of DC bugs along three key

stages: triggering, errors & failures, and fixing (Table 1).

Triggering is the process where software execution states

deviate from correct to incorrect under specific conditions.

At the end of this process, the manifestation of DC bugs

changes from non-deterministic to deterministic. Errors and

failures are internal and external software misbehaviors. Fix-

ing shows how developers correct the bug. We will discuss

in detail these categories in their respective sections.

2.4 Threats to Validity

For every bug, we first ensure that the developers marked

it as a real bug (not a false positive). We also check that

the bug description is clear. We then re-enumerate the full

sequence of operations (the “steps”) to a clearer and more

concise description such as the ones in Figure 2. Finally, to

improve the quality of the taxonimization process, each bug

classification is reviewed by all authors in this paper. Our

study cannot and does not cover DC bugs not fixed by the

developers. Even for fixed bugs, we do not cover those that

are not described clearly in the bug repositories, a sacrifice

we had to make to maintain the accuracy of our results.

Readers should be cautioned not to generalize the statis-

tics we report as each distributed system has unique purpose,

design and implementation. For example, we observe 2:1

overall ratio between order and atomicity violations §3.1,

3

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

however the individual ratios are different across the four

systems (e.g. 1:2 in ZooKeeper and 6:1 in MapReduce). Like

all empirical studies, our findings have to be interpreted with

our methodology in mind.

2.5 TaxDC Database

We name the product of our study TaxDC database. TaxDC

contains in total 2,083 classification labels and 4,528 lines

of clear and concise re-description of the bugs (our version,

that we manually wrote) including the re-enumeration of the

steps, triggering conditions, errors and fixes. We will release

TaxDC to the public 1. We believe TaxDC will be a rich “bug

benchmark” for researchers who want to tackle distributed

concurrency problems. They will have sample bugs to begin

with, advance their work, and do not have to repeat our

multi-people-year effort.

2.6 Detailed Terminologies

Below are the detailed terminologies we use in this paper.

We use the term “state” to interchangeably imply local state

(both in-memory and on-disk per-node state) or global state

(a collection of local states and outstanding messages). A

protocol (e.g., read, write, load balancing) creates a chain of

events that modify system state. User-facing protocols are

referred as foreground protocols while those generated by

daemons or operators are referred as background protocols.

We consider four types of events: message, local compu-

tation, fault and reboot. The term fault represents component

failures such as crashes, timeouts, and disk errors. A timeout

(system-specific) implies a network disconnection or busy

peer node. A crash usually implies the node experiences a

power failure. A reboot means the node comes back up.

Throughout the paper, we present bug examples by ab-

stracting system-specific names. As shown in Figure 1, we

use capital letters for nodes (e.g., A, B), two small letters for

a message between two nodes (ab is from A to B). Occasion-

ally, we attach system-specific information in the subscript

(e.g., AAppMaster sends abtaskKill message to BNodeManager). We

use “ / ” to imply concurrency (ac/bc implies the two mes-

sages can arrive at C in different orders, ac or bc first).

A dash, “ – ”, means causal relation of two events (ab-bc

means ab causally precedes bc). Finally, we use “N*” to rep-

resent crash, “N!” reboot, and “N+” local computation at N.

We cite bug examples with clickable hyperlinks (e.g.,

m3274). To keep most examples uniform, we use MapRe-

duce examples whenever possible. We use the following ab-

breviations for system names: “c/CA” for Cassandra, “h/HB”

for HBase, “m/MR” for Hadoop MapReduce, and “z/ZK”

for ZooKeeper; and for system-specific components: “AM”

for application master, “RM” for resource manager, “NM”

for node manager, “RS” for region server, and “ZAB” for

ZooKeeper atomic broadcast.

1 Please check our group website at http://ucare.cs.uchicago.edu

3. Trigger

“That is one monster of a race!” — m3274

DC bugs often have a long triggering process, with many

local and global events involved. To better reason about this

complicated process, we study them from two perspectives:

1. Timing conditions (§3.1): For every DC bug, we identify

the smallest set of concurrent events E, so that a specific

ordering of E can guarantee the bug manifestation. This

is similar to the interleaving condition for LC bugs.

2. Input preconditions (§3.2): In order for those events in

E to happen, regardless of the ordering, certain inputs or

fault conditions (e.g., node crashes) must occur. This is

similar to the input condition for LC bugs.

Understanding the triggering can help the design of testing

tools that can proactively trigger DC bugs, bug detection

tools that can predict which bugs can be triggered through

program analysis, and failure prevention tools that can sabo-

tage the triggering conditions at run time.

3.1 Timing Conditions (TC)

Most DC bugs are triggered either by untimely delivery of

messages, referred to as message timing bugs, or by untimely

faults or reboots, referred to as fault timing bugs. Rarely DC

bugs are triggered by both untimely messages and untimely

faults, referred to as message-fault bugs. Table 2 shows the

per-system breakdown and Figure 3a (TC) the overall break-

down. Since a few bugs are triggered by more than one type

of timing conditions (§3.3), the sum of numbers in Table 2 is

slightly larger than the total number of DC bugs.

Message Timing Bugs. The timing conditions can be ab-

stracted to two categories:

a. Order violation (44% in Table 2) means a DC bug man-

ifests whenever a message comes earlier (later) than an-

other event, which is another message or a local compu-

tation, but not when the message comes later (earlier).

b. Atomicity violation (20% in Table 2) means a DC bug

manifests whenever a message comes in the middle of

a set of events, which is a local computation or global

communication, but not when the message comes either

before or after the events.

LC and DC bugs are similar in that their timing conditions

can both be abstracted into the above two types. However,

the subjects in these conditions are different: shared memory

accesses in LC and message deliveries in DC. The ratio be-

tween order violation and atomicity violation bugs are also

different: previous study of LC bugs showed that atomicity

violations are much more common than order violations in

practice [45]; our study of DC bugs shows that this relation-

ship does not apply or even gets reversed in several repre-

sentative distributed systems.

4

http://issues.apache.org/jira/browse/MAPREDUCE-3274
http://ucare.cs.uchicago.edu
http://issues.apache.org/jira/browse/MAPREDUCE-3274

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

Ordering Atomicity Fault Reboot

CA 4 4 6 5

HB 13 9 8 1

MR 25 4 5 3

ZK 4 8 7 5

All 46 25 26 14

Table 2. #DC bugs triggered by timing conditions (§3.1).
The total is more than 104 because some bugs require more than

one triggering condition. More specifically, 46 bugs (44%) are

caused only by ordering violations, 21 bugs (20%) only by atom-

icity violations, and 4 bugs (4%) by multiple timing conditions (as

also shown in Figure 3a).

An order violation can originate from a race between two

messages (message-message race) at one node. The race can

happen between two message arrivals. For example, Fig-

ure 1a illustrates ac/bc race at node C in m3274. Specif-

ically, BRM sends to CNM a task-init message (bcinit), and

soon afterwards, AAM sends to CNM a task-kill preemption

message (ackill), however ackill arrives before bcinit and thus

is incorrectly ignored by C. The bug would not manifest if

ackill arrives after bcinit (Figure 1b). Message-message race

can also happen between a message arrival and a message

sending. For example, the ab/bc race in Figure 1c depicts

h5780. In this bug, BRS sends to CMaster a cluster-join request

(bcjoin) unexpectedly before a security-key message (abkey)

from AZK arrives at B, causing the initialization to abort.

Interestingly, message-message race can also occur con-

currently across two nodes. For example, Figure 1d illus-

trates ab/ba race crisscrossing two nodes A and B in m5358.

Specifically, AAM sends abkill to a backup speculative task

at BNM because the job has completed, but concurrently the

backup task at B sends bacomplete to A, creating a double-

complete exception at A. If abkill arrives early at B, ba will

not exist and the bug will not manifest (Figure 1e).

An order violation can also originate from a race between

a message and a local computation (message-compute race).

For example, Figure 1f illustrates ab/b+ race in m4157.

First, BAM was informed that a task has finished and B plans

to close the job and remove its local temporary files (b+).

However, just before b+, ARM sends to B a kill message (ab)

and hence the files are never removed, eventually creating

space issues. To prevent the failure, the kill message has to

arrive after the local cleanup (Figure 1g).

An atomicity violation, as defined above, originates when

a message arrives in the middle of a supposedly-atomic

local computation or global communication. For example,

Figure 1h illustrates m5009. When BNM is in the middle

of a commit transaction, transferring task output data (bc)

to CHDFS, ARM sends a kill preemption message (ab) to B,

preempting the task without resetting commit states on C.

The system is never able to finish the commit — when B

later reruns the task and tries to commit to C (bc’), C throws

b
c

bc

(f)

(a) (b) (c)

(d) (e)

A!

(j)

bc

ac

ac
a
b

ab

ba

b+ab ab

(i)

A*

A B C A B C A B

b+

(h)

ab
bc

bc'

bc
A*

ab

cb

ab

ba

ba
ab

C

(g)

Figure 1. Triggering patterns (§3.1). The three vertical

lines represent the timeline of nodes A, B and C. An arrow with

xy label implies a message from X to Y. A square box with label

x+ implies a local state-modifying computation at node X. A thick

arrow implies a set of messages performing an atomic operation.

X* and X! implies a crash and reboot at node X respectively (§2.6).

All figures are discussed in §3.1

a double-commit exception. This failure would not happen

if the kill message (ab) comes before or after the commit

transaction (bc).

Fault and Reboot Timing Bugs. Fault and reboot timing

bugs (32% in Table 2) manifest when faults and/or reboots

occur at specific global states S i; the bugs do not manifest if

the faults and reboots happen at different global states S j.

Figure 1i illustrates a fault-timing bug in m3858. Here,

ANM1 is sending a task’s output to BAM (ab) but A crashes in

the middle (A*) leaving the output half-sent. The system is

then unable to recover from this untimely crash — B detects

the fault and reruns the task at CNM2 (via bc) and later when

C re-sends the output (cb), B throws an exception. This bug

would not manifest, if the crash (A*) happens before/after

the output transfer (ab).

Figure 1j depicts a reboot-timing bug in m3186. Here,

ARM sends a job (ab) to BAM and while B is executing the

job, A crashes and reboots (A*, A!) losing all its in-memory

job description. Later, B sends a job-commit message (ba)

but A throws an exception because A does not have the job

information. The bug would not manifest if A reboots later:

if A is still down when B sends bacommit message, B will

realize the crash and cancel the job before A reboots and A

will repeat the entire job assignment correctly.

5

http://issues.apache.org/jira/browse/MAPREDUCE-3274
http://issues.apache.org/jira/browse/HBASE-5780
http://issues.apache.org/jira/browse/MAPREDUCE-5358
http://issues.apache.org/jira/browse/MAPREDUCE-4157
http://issues.apache.org/jira/browse/MAPREDUCE-5009
http://issues.apache.org/jira/browse/MAPREDUCE-3858
http://issues.apache.org/jira/browse/MAPREDUCE-3186

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

z1264: (1) Follower F crashed in the past, (2) F reboots and joins the
cluster, (3) Leader L sync data with F and send snapshot, (4) In the middle

of step 3-6, client updates data with Tx-#15; L forwards the update to F,

(5) F applies the update in memory only, due to a concurrent sync, (6) L

tells F syncing is finished, (7) Client updates data with Tx-#16; F writes

update to disk correctly, (8) F crashes, (9) F reboots and joins the cluster

again, (10) L sync data with F, but this time L sends only “diff” starting

with Tx-#17 (11) F permanently loses data from Tx-#15, inconsistent
with L and other followers!

Figure 2. A DC bug in ZooKeeper.

Message-Fault Bugs. Four DC bugs are caused by a com-

bination of messages and faults. For example, in Figure 2, a

message (step 4) arrives in the middle of some atomic opera-

tion (step 3-6). This message atomicity violation leads to an

error that further requires a fault timing (step 8) to become

an externally visible failure.

Finding #1: DC bugs are triggered mostly by untimely mes-

sages (64% in Table 2) and sometimes by untimely faults/reboots

(32%), and occasionally by a combination of both (4%). Among

untimely messages, two thirds commit order violations due to

message-message or message-computation race on the node they

arrive; the others commit atomicity violations.

3.2 Input Preconditions (IP)

The previous section presents simple timing conditions that

can be understood in few simple steps. In practice, many of

the conditions happen “deep” in system execution. In other

words, the triggering path is caused by complex input pre-

conditions (IP) such as faults, reboots, and multiple proto-

cols. Let’s use the same example in Figure 2. First, a fault

and a reboot (step 1-2) and a client request (step 4) must

happen to create a path to the message atomicity violation

(step 4 interfering with step 3-6). Second, conflicting mes-

sages from two different protocols (ZAB and NodeJoin ini-

tiated in step 2 and 4) have to follow specific bug-triggering

timing conditions. Even after the atomicity violation (after

step 6), the bug is not guaranteed to lead to any error yet

(i.e., a benign race). Finally, the follower experiences an un-

timely fault (step 8), such that after it reboots (step 9), a

global replica-inconsistency error will happen (step 11). Put

it in a reverse way, before step 8, the global state is S i and

S i+crash→error, and the only way for the system to reach

S i is from complex preconditions such as a fault, a reboot,

and some foreground and background protocols.

Statistically, Figure 3b (IP-FLT) shows that 63% of DC

bugs must have at least one fault. In more detail, Figure 3c-e

(IP-TO, IP-CR, IP-RB) shows the percentage of issues that

require timeouts, crashes and reboots respectively, including

how many instances of such faults must be there; the rest is

other faults such as disk errors (not shown).

Figure 3f (IP-PR) shows how many “protocol initiations”

mentioned in the bug description. For example, if the system

needs to perform one execution of background protocol and

(q) WHR

(p) FIX

(o) FAIL

(n) ER-E/S

(m) ER-L/G

(l) ERROR

(k) TS-UEv

(j) TS-PR

(i) TS-ND

(h) TS-MSG

(g) IP-B/F

(f) IP-PR

(e) IP-RB

(d) IP-CR

(c) IP-TO

(b) IP-FLT

(a) TC

Deploy (46%) Test Undefined (44%)

FixTime (30%) FixEasy (40%) FixMisc (30%)

Operation (47%) Node Data (28%) Perf

Explicit (53%) Silent (47%)

Local (46%) Global (54%)

LM LSem LH LSil GW (29%) GM GSil

1 (92%) 2+

1 (47%) 2 (53%)

1 2 (42%) 3 (48%) 4+

0 1 (27%) 2 (34%) 3+ (26%)

FG BG (52%) Mix (29%)

1 (20%) 2 (29%) 3 (24%) 4 5 6+

0 (73%) 1 (20%) 2+

0 (53%) 1 (35%) 2 3+

No (88%) Yes

No (37%) Yes (63%)

Order (44%) Atom (20%) FR (32%) Mix

Figure 3. Statistical overview of TaxDC. Timing Condi-

tions (TC) is discussed in §3.1, Input Preconditions (IP) in §3.2,

Triggering Scope (TS) in §3.3, Errors (ER) in §4.1, Failures (FAIL)

in §4.2, Fixes (FIX) in §5, and Where Found (WHR) in §7.

also three concurrent calls to the write protocol, then we

label it with four protocol initiations. Up to 3 protocol ini-

tiations covers three quarters of DC bugs. When we count

the number of unique protocols involved in all the bugs we

study, we record 10 Cassandra, 13 HBase, 10 MapReduce,

6 ZooKeeper unique protocols, or 39 protocols in total. This

again highlights the complexity of fully complete systems.

Figure 3g (IP-B/F) shows our categorization of protocols

that are concurrently running into foreground only, back-

ground only, and foreground-background (mix) categories.

More than three quarters of the bugs involve some back-

ground protocols and about a quarter involves a mix of fore-

ground and background protocols.

Finding #2: Many DC bugs need complex input preconditions,

such as faults (63% in Figure 3b), multiple protocols (80% in

Figure 3f), and background protocols (81% in Figure 3g) .

3.3 Triggering Scope (TS)

We now analyze the triggering scope (TS), which is a com-

plexity measure of DC-bug timing conditions. We use four

metrics to measure the scope: message count (TS-MSG),

node (TS-ND), protocol (TS-PR), and untimely event (TS-
UEv) counts as shown in Figure 3h-k. This statistic is impor-

tant with respect to the scalability of model checking, bug

detection and failure diagnostic tools (§8.2-8.5).

6

http://issues.apache.org/jira/browse/ZOOKEEPER-1264

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

A

B

C

D n om p rq

Figure 4. A Cassandra’s Paxos bug. In c6023, three key-value updates (different arrow types) concurrently execute the Paxos protocol

on four nodes (we simplify from the actual six nodes). The bug requires three message-message race conditions: (1) m arrives before n, (2) o

before p, and (3) q before r, which collectively makes D corrupt the data and propagate the corruption to all replicas after the last broadcast.

Note that the bug would not surface if any of the conditions did not happen. It took us one full day to study this bug.

Message count implies the minimum number of messages

involved in E as defined in the beginning of section 3. Fig-

ure 3h (TS-MSG) shows that one or two triggering mes-

sages are the most common, with 7 messages as the maxi-

mum. Informally, zero implies fault timing bugs without any

message-related races, one implies message-compute race,

two implies message-message as in Figure 1a, and three im-

plies a scenario such as ac/(ab-bc) race where ab and ac are

concurrent or non-blocking message sending operations.

The node and protocol scopes present how many nodes

and protocols are involved within the message scope. Figure

3i-j (TS-ND and TS-PR) shows that the scale of node and

protocol triggering scope is also small, mostly two or three

nodes and one or two protocols.

The untimely events count implies the total number of or-

der violations, atomicity violations, untimely faults and re-

boots in the triggering timing condition of a bug. Figure 3k

(TS-UEv) shows that only eight bugs require more than one

untimely events. Four of them are message-fault bugs, each

requiring one untimely message and one untimely fault to

trigger (e.g., step 4 and 8 in Figure 2). Three are fault-reboot

timing bugs, each requiring one untimely fault and one un-

timely reboot. The last one is c6023, shown in Figure 4, re-

quiring three message-message order violations to happen.

Finding #3: The timing conditions of most DC bugs only in-

volve one to three messages, nodes, and protocols (>90% in

Figure 3h-j). Most DC bugs are mostly triggered by only one

untimely event (92% in Figure 3k).

4. Errors and Failures

“... we [prefer] debugging crashes instead of hard-to-track

hanging jobs.” — m3634

4.1 Error Symptoms

From the triggering conditions, we then scrutinize the first

error that happens immediately after. First errors are the piv-

otal point that bridges the triggering and error-propagation

process. Identifying first errors help failure diagnosis get

closer to disclosing bug triggering and root causes and help

bug detection get closer to accurately predict failures (§8).

Local Errors Global Errors

Mem Sem Hang Sil Wrong Miss Sil

CA 2 0 0 4 3 3 7

HB 1 2 1 2 15 3 6

MR 2 13 7 4 14 4 0

ZK 0 6 2 5 1 0 5

All 5 21 10 15 33 10 18

Table 3. First error symptoms of DC bugs (§4.1). Some

bugs cause multiple concurrent first errors.

We categorize first errors into local errors and global er-

rors, based on whether they can be observed from the trig-

gering node NT alone. Here, NT is the node where triggering

ends. It is the receiver node of untimely messages (e.g., node

C in Figure 1a) or the node with untimely fault (e.g., node

A in Figure 1i). For each error, we also check whether it is

an explicit or silent error. Table 3 and Figure 3l (ERR) show

the per-system and overall breakdowns respectively. Some

MapReduce bugs caused multiple concurrent first errors of

different types.

First, DC bugs can manifest into both local explicit errors

and local silent errors. The former includes memory excep-

tions such as null-pointer exceptions (5% in Table 3) and

semantic errors such as wrong state-machine transition ex-

ceptions thrown by the software (19%). Local silent errors

include hangs, such as forever waiting for certain states to

change or certain messages to arrive which are typically ob-

served implicitly by users (9%), and local silent state cor-

ruption, such as half-cleaned temporary files (13%).

When local error is non-obvious in NT , we analyze if the

error is observable in other nodes communicating with NT .

Many DC bugs manifest into explicit global errors through

wrong messages (29% in Table 3). Specifically, the commu-

nicating node receives an incorrect message from NT , and

throws an exception during the message handling. However,

a few DC bugs still lead to silent global errors. These include

missing messages, where NT never sends a reply that the

communicating node is waiting for in the absence of time-

out (9%), and global silent state corruption such as replica

inconsistencies between NT and the other nodes (16%).

7

http://issues.apache.org/jira/browse/CASSANDRA-6023
http://issues.apache.org/jira/browse/CASSANDRA-6023
http://issues.apache.org/jira/browse/MAPREDUCE-3634

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’16)

Finding #4: Local and global first errors are about equally

common; 46% vs. 54% in Figure 3m (ER-L/G). About half of

the DC bugs generate explicit first errors (53%), including local

exceptions and global wrong messages, and the remaining DC

bugs lead to silent errors (47%), as shown in Figure 3n (ER-

E/S). Some of them immediately lead to hangs in the triggering

node NT (9%) or a node communicating with NT (9%).

4.2 Failure Symptoms

Figure 3o (FAIL) shows that errors from DC bugs will

eventually lead to a wide range of fatal failures including

node downtimes (17%), data loss/corruption/inconsistencies

(28%), operation failures (47%), and performance degrada-

tion (8%). A node downtime happens when the node either

crashes or hangs (i.e., it may still be heartbeating). It hap-

pens to both master/leader nodes and worker/follower nodes

in our study. Data-related failures and performance prob-

lems are an artifact of incorrect state logic induced from DC

bugs. For example, in HBase, concurrent region updates and

log splittings can cause data loss. In Cassandra, some dead

nodes are incorrectly listed as alive causing unnecessary data

movement that degrades performance. Node downtimes and

data-related failures could also cause some operations to fail.

To avoid double counting, we consider a bug as causing op-

eration failures only when it does not cause node downtimes

or data-related failures.

5. Fixes

“We have already found and fix many cases ... however it

seems exist many other cases.” — h6147

We next analyze bug patches to understand developers’

fix strategies. In general, we find that DC bugs can be fixed

by either disabling the triggering timing or changing the sys-

tem’s handling to that timing (fix timing vs. fix handling).

The former prevents concurrency with extra synchroniza-

tion and the latter allows concurrency by handling untimely

events properly. Since message timing bugs are fixed quite

differently from fault timing bugs, we separate them below.

5.1 Message Timing Bug Fixes

The left half of Table 4 shows that only one fifth of mes-

sage timing bugs are fixed by disabling the triggering timing,

through either global or local synchronization. Only a cou-

ple of bugs are fixed through extra global synchronization,

mainly due to its complexity and communication cost. For

example, to prevent a triggering pattern b+/ab in Figure 1f,

m5465’s fix adds a monitor on ARM to wait for badone mes-

sage from BAM after B finishes with its local computation

(b+); the result is b+-ba-ab global serialization. More often,

the buggy timing is disabled through local synchronization,

such as re-ordering message sending operations within a sin-

gle node. For example, h5780’s fix for ab/bc race in Figure

Fix Timing Fix Handling

Glob Loc Ret Ign Acc Misc

CA 0 0 0 1 3 4

HB 2 7 2 1 7 3

MR 2 8 2 7 8 3

ZK 0 4 0 3 0 1

All 4 19 4 12 18 11

Table 4. Fix strategies for message timing bugs (§5.1).
Some bugs require more than one fix strategy.

1c forces the sending of bc request at B to wait for the receipt

of ab; the result is ab-bc local serialization at B.

The right half of Table 4 shows that fix handling is more

popular. Fix handling fortunately can be simple; many fixes

do not introduce brand-new computation logic into the sys-

tem, which can be done in three ways. First, the fix can han-

dle the untimely message by simply retrying it at a later time

(as opposed to ignoring or accepting it incorrectly). For ex-

ample, to handle bc/ac race in Figure 1a, m3274 retries the

unexpectedly-early ackill message at a later time, right after

the to-be-killed task starts. Second, the fix can simply ig-

nore the message (as opposed to accepting it incorrectly).

For example, to handle ab/ba race in Figure 1d, m5358 sim-

ply ignores the unexpectedly-late bafinish message that ar-

rives after AAM sends an abkill message. Finally, the patch

can simply accept the untimely message by re-using exist-

ing handlers (as opposed to ignoring it or throwing an error).

For example, m2995’s fix changes the node AM to accept

an unexpectedly-early expiration message using an existing

handler that was originally designed to accept the same mes-

sage at a later state of AM. m5198’s fix handles the atomic-

ity violation by using an existing handler and simply cancels

the atomicity violating local operation. The rest of the fix-

handling cases require new computation logic to fix bugs.

5.2 Fault/Reboot Timing Bug Fixes

Table 5 summarizes fix strategies for fault/reboot timing

bugs. Unlike message timing, only rare bugs can be fixed

by controlling the triggering timing either globally or locally

(e.g., by controlling the timing of the fault recovery actions).

A prime example is an HBase cluster-wide restart scenario

(h3596). Here, as A shuts down earlier, B assumes respon-

sibility of A’s regions (via a region-takeover recovery pro-

tocol), but soon B shuts down as well with the regions still

locked in ZooKeeper and the takeover cannot be resumed af-

ter restart. The patch simply adds a delay before a node starts

region takeover so that it will likely get forced down before

the takeover starts.

For the majority of fault timing bugs, their patches con-

duct two tasks: (1) detect the local/global state inconsis-

tency caused by the fault and (2) repair/recover the inconsis-

tency. The former is accomplished through timeouts, addi-

tional message exchanges, or others (omitted from Table 5).

8

http://issues.apache.org/jira/browse/HBASE-6147
http://issues.apache.org/jira/browse/MAPREDUCE-5465
http://issues.apache.org/jira/browse/HBASE-5780
http://issues.apache.org/jira/browse/MAPREDUCE-3274
http://issues.apache.org/jira/browse/MAPREDUCE-5358
http://issues.apache.org/jira/browse/MAPREDUCE-2995
http://issues.apache.org/jira/browse/MAPREDUCE-5198
http://issues.apache.org/jira/browse/HBASE-3596

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

Fix Timing Fix Handling

G L Detect Recover

TO Msg Canc Misc

CA 1 0 3 2 4 6

HB 0 1 3 1 6 1

MR 2 1 1 1 2 1

ZK 0 3 0 1 1 7

All 3 5 7 5 13 15

Table 5. Fix strategies for fault/reboot timing bugs
(§5.2). Some bugs require more than one fix strategy.

The latter can be achieved by simply canceling operations or

adding new computation logic.

Finding #5: A small number of fix strategies have fixed most

DC bugs. A few DC bugs are fixed by disabling the triggering

timing (30% in Figure 3p), occasionally through extra messages

and mostly through local operation re-orderings. Most DC bugs

are fixed by better handling the triggering timing, most of which

do not introduce new computation logic — they ignore or de-

lay messages, re-use existing handlers, and cancel computation

(40%).

6. Root Causes

“This has become quite messy, we didn’t foresee some of

this during design, sigh.” — m4819

It is difficult to know for sure why many DC-bug trigger-

ing conditions were not anticipated by the developers (i.e.,

the root causes). In this section, we postulate some possible

and common misbeliefs behind DC bugs.

“One hop is faster than two hop.” Some bugs manifest under

scenario bc/(ba-ac), similar to Figure 1a. Developers may

assume that bc (one hop) should arrive earlier than ba-ac

(two hops), but ac can arrive earlier and hit a DC bug.

“No hop is faster than one hop.” Some bugs manifest under

scenario ba-(b+/ab), similar to Figure 1f. Developers may

incorrectly expect b+ (local computation with no hop) to

always finish before ab arrives (one hop).

“Atomic blocks cannot be broken.” Developers might be-

lieve that “atomic” blocks (local or global transactions)

can only be broken unintentionally by some faults such as

crashes. However, we see a few cases where atomic blocks

are broken inadvertently by the system itself, specifically via

untimely arrival of kill/preemption messages in the middle

of an atomic block. More often, the system does not record

this interruption and thus unconsciously leaves state changes

half way. Contrary, in fault-induced interruption, some fault

recovery protocol typically will handle it.

“Interactions between multiple protocols seem to be safe.” In

common cases, multiple protocols rarely interact, and even

when they do, non-deterministic DC bugs might not surface.

This can be unwittingly treated as normally safe, but does

not mean completely safe.

“Enough states are maintained.” Untimely events can un-

expectedly corrupt system states and when this happens the

system does not have enough information to recollect what

had happened in the past, as not all event history is logged.

We observe that some fixes add new in-memory/on-disk

state variables to handle untimely message and fault timings.

Finding #6: Many DC bugs are related with a few common

misconceptions that are unique to distributed systems.

7. Other Statistics

“Great catch, Sid! Apologies for missing the race

condition.” — m4099

We now present other quantitative findings not included

in previous discussions. We attempted to measure the com-

plexity of DC bugs using four metrics: (a) the number of

“re-enumerated steps” as informally defined in §2.4, (b) the

patch LOC including new test suites for the corresponding

bug, (c) the time to resolve (TTR), and (d) the number of

discussion comments between the bug submitter and devel-

opers. The 25th percentile, median, and 75th percentile for

the four metrics are (a) 7, 9, and 11 steps, (b) 44, 172, and

776 LOC, (c) 4, 14, and 48 days to resolve, (d) 12, 18, and

33 comments.

In terms of where the bugs were found, Figure 3r (WHR)

highlights that 46% were found in deployment and 10%

from failed unit tests. The rest, 44%, are not defined (could

be manually found or from deployment). Some DC bugs

were reported from large-scale deployments such as execu-

tions of thousands of tasks on hundreds of machines.

Due to space constraints, we do not provide cross-cutting

analyses (e.g., how many bugs have >2 protocols and >2

crashes with patch >100 LOC and were found in deploy-

ment). However, future TaxDC users can easily do so with

all the rich statistics stored in TaxDC database.

8. Lessons Learned

“This issue, and the other related issues ... makes me very

nervous about all the state combinations distributed

between [ZooKeeper and many HBase components]. After

this is done, do you think we can come up with a simpler

design? I do not have any particular idea, so just

spitballing here.” — h6060

We now discuss the lessons learned, implications to ex-

isting tools and the opportunities for new research in com-

bating DC bugs. Although many high-level directions can be

9

http://issues.apache.org/jira/browse/MAPREDUCE-4819
http://issues.apache.org/jira/browse/MAPREDUCE-4099
http://issues.apache.org/jira/browse/HBASE-6060

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

adopted from work on LC bugs, there are many interesting

challenges and opportunities unique to DC bugs.

8.1 Fault Paths and Multi-Protocol Interactions

Individual protocols tend to be robust in general. Only 18

DC bugs occur in individual protocols without any input

fault condition; only 8 of them are in foreground protocols.

On the other hand, a large majority of DC bugs happen

due to concurrent executions of multiple protocols and/or

different fault timings (Finding #2). This has a tremendous

implication to input testing: all types of verification, testing,

and analysis approaches must consider fault injections and

multiple protocols as input conditions. Although recent work

has paid attention to this [24, 35, 67], we emphasize that all

forms of faults (§2.6) must be exercised.

8.2 Distributed Systems Model Checkers

Assuming the necessary input conditions are exercised, the

next question is: can we test different event re-orderings to

hit the triggering timing (§3.1)? This is the job of distributed

system model checkers (dmck), which are gaining popular-

ity recently [26, 37, 38, 59, 65]. Dmck works by intercepting

distributed events and permuting their ordering. The more

events included, the more scalability issues will arise due to

state-space explosion. To date, no dmck completely controls

the timings of all necessary events that might contribute to

the triggering timing (Finding #1). MaceMC [37] only re-

orders messages and network disconnections. MoDist [26]

exercises timeouts and Demeter [26] intercepts messages

and local computation but they do not explore different tim-

ing of multiple crashes and reboots. SAMC [38] exercises

multiple faults but does not support timeout and thread con-

trols. Also, none of the above include storage faults or timing

issues [27]. Therefore, continued research on scalable explo-

ration algorithms is needed, specifically when all the neces-

sary events need to be controlled. This could be helped by

DC bugs’ triggering scope characteristics (Finding #3), just

like that in LC model checkers [48].

8.3 Domain-Specific Specifications

Now, assuming the necessary events are controlled, the next

question is: do we have the specification to judge the man-

ifestation of a bug? This is a plague for many tools. For

example, Demeter does not find new bugs [26] and SAMC

[38] finds two new bugs. Conversations with the authors sug-

gest that their target systems do not deploy detailed spec-

ifications, and thus some bugs are left uncaught. Deploy-

ing generic “textbook” specifications (e.g., “only one leader

exists”) does not help as they could lead to false positives

(e.g., ZooKeeper allows two leaders at a single point in

time). Many research papers on specifications only deploy

few of them [24, 42, 55]. Developers also bemoan the hard-

to-debug fail-silent problems m3634 and prefer to see easier-

to-debug fail-stop bugs.

On the positive side, 53% of DC bugs lead to explicit first

errors (Finding #4), implying that sanity checks already in

software can be harnessed as specifications (more in §8.4).

On the other side, compared to single-machine systems, dis-

tributed systems are much more capable of masking errors.

Therefore, these error specifications have to be used with

caution to avoid false positives. Furthermore, 47% of DC

bugs lead to silent first errors (Finding #4). Many of them

proceed to “silent failures”, such as data loss, node hangs,

etc. Even if they become explicit errors later, these explicit

errors could be far away from the initial triggering condi-

tions (e.g., Figure 4). In short, no matter how sophisticated

the tools are, they are ineffective without accurate specifica-

tions. This motivates the creation or inference of local speci-

fications that can show early errors or symptoms of DC bugs.

8.4 Bug Detection Tools

We now discuss bug detection tools, which are unfortunately

rare for DC bugs, although very popular for LC bugs [8, 20,

30, 46, 48, 56]. Bug detection tools look for bugs that match

specific patterns. They cannot provide bug-free proof, but

can be efficient in discovering bugs when guided by the right

patterns. Our study provides guidance and patterns that can

be exploited by future DC bug detection.

Generic detection framework. Finding #1 implies that

detecting DC bugs, particularly message-timing DC bugs,

should focus on two key tasks: (1) obtaining timing specifi-

cations, including order and atomicity specifications among

messages and computation; and (2) detecting violations to

these specifications through dynamic or static analysis.

Invariant-guided detection. Likely program invariants can

be learned from program behaviors, and used as specifica-

tions in bug detection [18, 19, 46]. The key challenge is to

design simple and suitable invariant templates. For exam-

ple, “function F1 should always follow F2” is a useful tem-

plate for API-related semantic bugs [18]; “the atomicity of

accesses a1 and a2 should never be violated” is effective for

LC bugs [46]. Finding #1 about triggering timing and Find-

ing #4 about error patterns provide empirical evidence that

these templates can be effective for DC bugs: “message bc
should arrive at C before message ac (ca) arrives (leaves)”;

“message ab should never arrive in the middle of event e on

node B”; and “message ab should always be replied”.

Misconception-guided bug detection. Knowing program-

mers’ misconceptions can help bug detectors focus on speci-

fications likely to be violated. LC bug researchers have lever-

aged misconceptions such as “two near-by reads of the same

variable should return the same value” [46] and “a condi-

tion checked to be true should remain true when used” [53].

Finding #6 reveals that DC-unique common misconceptions,

such as “a single hop is faster than double hops”, “lo-

cal computation is faster than one-hop message”, “atomic

blocks cannot be broken” can help DC bug detection.

10

http://issues.apache.org/jira/browse/MAPREDUCE-3634

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

Error-guided bug detection. Finding #4 shows that many

DC bugs lead to explicit local/global errors, which implies

that timing specifications for many DC bugs can be inferred

backward based on explicit errors. For example, program

analysis may reveal that a state-machine exception e will

arise whenever C receives message ac before bc, which

provides a timing specification (ac arrives before bc) whose

violation leads to a local error; or, the analysis may reveal

that exception e arises whenever node B receives a message

cb from node C and C only sends cb when ac arrives at

C before bc, which provides a timing specification whose

violation leads to a wrong-message global error; and so on.

Software testing. Testing takes a quarter of all software de-

velopment resources, and is crucial in exposing bugs before

code release. Although many testing techniques have been

proposed for LC bugs [9, 51, 57], there have been few for

DC bugs [58]. Finding #2 implies that test input design has to

consider faults, concurrent protocols, and background proto-

cols. Finding #3 implies that pairwise testing, which targets

every pair of message ordering, every pair of protocol inter-

action, and so on, will work much more effectively than all

combination testing, which exercises all possible total orders

and interactions of all messages and all protocols. For exam-

ple, a large number of DC bugs (Figure 3d-f) can be found

with inputs of at most two protocols, crashes and reboots.

8.5 Failure Diagnosis

Given failure symptoms, distributed systems developers

have to reason about many nodes to figure out the triggering

and root cause of a failure. Our study provides guidance to

this challenging process of failure diagnosis.

Slicing/dependence analysis. Identifying which instruc-

tions can affect the outcome of an instruction i is a widely

used debugging technique for deterministic sequential bugs.

However, it cannot scale to the whole distributed systems,

and hence is rarely used. Finding #3 indicates that most DC

bugs have deterministic error propagation; Finding #4 shows

that many DC bugs have their errors propagate through miss-

ing or wrong messages. Therefore, per-node dependence

analysis that can quickly identify whether the generation of

a local error depends on any incoming messages would help

DC bug failure diagnosis to get closer and closer to where

the triggering events happen.

Error logging. Error logging is crucial in failure diagno-

sis. If the first error of a DC bug is an explicit local error, the

error log can help developers quickly identify the triggering

node and focus their diagnosis on one node. Finding #4 un-

fortunately shows that only 23% of DC bugs lead to explicit

local errors. This finding motivates future tool to help make

more DC bugs lead to explicit local errors.

Statistical debugging. Comparing success-run traces with

failure-run traces can help identify failure predictors for

semantic bugs [40] and concurrency bugs [33] in single-

machine software. The key design question is what type of

program properties should be compared between failure and

success runs. For example, branch outcomes are compared

for diagnosing semantic bugs but not for LC bugs. Finding

#1 and #3 about triggering timing conditions provide guid-

ance for applying this approach for DC bugs. We can collect

all message sending/arrival time at runtime, and then find

rare event orderings that lead to failures by contrasting them

with common “healthy” orderings (e.g., Figure 1b happens

99.99% of the time while Figure 1a happens 0.01% of the

time). Of course, there are challenges. Finding #2 and #3

show that many DC bugs come from the interactions of many

protocols. Thus, it is not sufficient to only log a chain of mes-

sages originated from the same request, a common practice

in request logging [13]. Furthermore, some DC bugs are trig-

gered by message-computation ordering. Therefore, logging

messages alone is not sufficient.

Record and Replay. Debugging LC concurrency bugs with

record and deterministic replay is a popular approach [52,

61]. However, such an approach has not permeated practices

in distributed systems debugging. A ZooKeeper developer

pointed us to a fresh DC bug that causes a whole-cluster out-

age but has not been fixed for months because the deploy-

ment logs do not record enough information to replay the

bug (z2172). There has been 9 back-and-forth log changes

and attachments with 72 discussion comments between the

bug submitter and the developers. More studies are needed

to understand the gap between record-replay challenges in

practice and the current state of the art [23, 43].

8.6 Failure Prevention and Fixing

Runtime Prevention. The manifestation of concurrency

bugs can sometimes be prevented by injecting delays at

runtime. This technique has been successfully deployed to

prevent LC bugs based on their timing conditions [36, 47,

68]. Finding #1 shows that many DC bugs are triggered by

untimely messages and hence can potentially be prevented

this way. For example, none of the bugs shown in Figure

1a–h would happen if we delay a message arrival/sending or

local computation. Of course, different from LC bugs, some

of these delays have to rely on a network interposition layer;

similar with LC bugs, some delays may lead to hangs, and

hence cannot be adopted.

Bug Fixing. Recent work automatically fixes LC bugs by

inserting lock/unlock or signal/wait to prohibit buggy tim-

ing [34, 41, 62]. Finding #5 shows that the same philoso-

phy is promising for 30% of studied DC bugs. Our study

shows that this approach has to be tweaked to focus on using

global messages (e.g., ACKs) or local operation re-ordering,

instead of lock or signal, to fix DC bugs. Finding #5 indi-

cates that 40% of those DC bugs are fixed by shifting mes-

sage handlers, ignoring messages, and canceling computa-

11

http://issues.apache.org/jira/browse/ZOOKEEPER-2172

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

h9095: (1) RS successfully OPENED region R, (2) RS notifies ZK that

region R is OPENED, (3) ZK continues region R state msg to Master, (4)

Master starts processing OPENED msg, (5) Meanwhile RS CLOSED
region R (asked by Client), (6) RS notifies ZK that region R is CLOSED,

(7) Master asks ZK to delete znode for region R, concurrently racing

with step 6!, (8) ZK deletes region R’s znode, (9) Master never assigns

region R to any RS. R becomes an orphan!

Figure 5. Race of HBase’s messages to ZooKeeper.

tion, without adding new computation logic. This presents a

unique opportunity for developing new and more aggressive

fixing techniques.

8.7 Distributed Transactions

In the middle of our study, we ask ourselves: if DC bugs

can be theoretically solved by distributed transactions, why

doesn’t such technique eliminate DC bugs in practice? Our

answers are: first, the actual implementations of theoretically-

proven distributed transactions are not always correct (as

also alluded in other work [10, 49]). For example, new DC

bugs continue to surface in complex distributed transactions

such as ZooKeeper’s ZAB and Cassandra’s Paxos as they are

continuously modified. Second, distributed transactions are

only a subset of a full complete system. A prime example is

the use of ZooKeeper in HBase for coordinating and sharing

states between HBase masters and region servers. Although

ZooKeeper provides linearization of updates, HBase must

handle its concurrent operations to ZooKeeper, for example,

step 6 and 7 in Figure 5; there are many other similar ex-

amples.Put simply, there are many protocols that do not use

distributed transactions, instead they use domain-specific fi-

nite state machines, which should be tested more heavily.

Another approach to eliminate non-deterministic bugs in

distributed protocols is by building deterministic distributed

systems. However, the technique is still in its infancy, at

least in terms of the impact to performance (e.g., an order

of magnitude of overhead [31]).

8.8 Verifiable Frameworks

Recently there is a growing work on new programming lan-

guage frameworks for building verifiable distributed systems

[16, 28, 63], but they typically focus on the main protocols

and not the full system including the background protocols.

One major challenge is that just for the basic read and write

protocols, the length of the proofs can reach thousands of

lines of code, potentially larger than the protocol implemen-

tation. Unfortunately, our study shows that the complex in-

teraction between foreground and background protocols can

lead to DC bugs. Therefore, for complete real-world sys-

tems, verification of the entire set of the protocols is needed.

8.9 LC bugs vs. DC bugs

There are clearly similarities between LC bugs and DC

bugs, as, by definition, they are both timing-related non-

deterministic bugs. Many DC bugs contain LC components:

untimely messages may lead to unsynchronized accesses

from multiple threads or multiple event-handlers [30, 54] in

a single machine. It is probably not a surprise that atomicity

violations and order violations are two dominant triggering

timing conditions for both LC and DC bugs (Finding #1).

Our observation of the small triggering scope of most DC

bugs (Finding #3) is similar with that for LC bugs, which

may be related to the nature of the bug sets — more compli-

cated bugs may be more difficult to fix, and hence less likely

to be included in empirical studies.

There are also many differences between LC bugs and

DC bugs, as they originate from different programming

paradigms and execution environments. For example, order

violations are much more common in DC bugs than those

in LC bugs (Finding #1); faults and reboots are much more

common in DC bugs than those in LC bugs (Finding #2);

the diagnosis of many DC bugs will have to reason beyond

one node, clearly different from that of LC bugs (Finding

#4); the fix strategies for DC bugs are very different from

those of LC bugs, because enforcing global synchronization

is difficult (Finding #5).

9. Conclude

DC Bugs impact the reliability, availability, and performance

of real-world distributed systems. Even with all the redun-

dancy and fault-recovery mechanisms deployed in today’s

systems, DC bugs make the software as the single point of

failure. Combating DC bugs will have a profound impact to

future software systems as more organizations are building

more distributed system layers on farms of machines and ser-

vices in this era of cloud computing. The gap between the

theory and practice of distributed systems reliability should

continue to be narrowed. We hope our work will commence

more interdisciplinary actions from diverse researchers and

practitioners in the areas of concurrency, fault tolerance and

distributed systems to combat DC bugs together.

10. Acknowledgments

We thank the anonymous reviewers for their tremendous

feedback and comments. We also would like to thank Chen

Tian of Huawei and Yohanes Surya and Nina Sugiarti of

Surya University for their continuing supports. This ma-

terial is based upon work supported by the NSF (grant

Nos. CCF-1336580, CNS-1350499, CCF-1439091, CNS-

1514256, IIS-1546543) and generous supports from Huawei

and Alfred P. Sloan Foundation. Any opinions, findings, and

conclusions, or recommendations expressed herein are those

of the authors and do not necessarily reflect the views of the

NSF or other institutions.

12

http://issues.apache.org/jira/browse/HBASE-9095

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

References

[1] http://www.freepastry.org/.

[2] http://ucare.cs.uchicago.edu/projects/cbs/.

[3] Apache Cassandra. http://cassandra.apache.org.

[4] Apache Hadoop. http://hadoop.apache.org.

[5] Apache Hadoop NextGen MapReduce (YARN).

https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html .

[6] Apache HBase. http://hbase.apache.org.

[7] Apache ZooKeeper. http://zookeeper.apache.org.

[8] Michael D. Bond, Katherine E. Coons, and Kathryn S.

McKinley. PACER: Proportional Detection of Data Races. In

PLDI, 2010.

[9] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi,

and Santosh Nagarakatte. A Randomized Scheduler with

Probabilistic Guarantees of Finding Bugs. In ASPLOS, 2010.

[10] Mike Burrows. The Chubby lock service for loosely-coupled

distributed systems. In OSDI ’06.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Michael Burrows, Tushar

Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A

Distributed Storage System for Structured Data. In OSDI ’06.

[12] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,

and Dawson Engler. An Empirical Study of Operating

System Errors. In SOSP ’01.

[13] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and

Thomas F. Wenisch. The Mystery Machine: End-to-end

performance analysis of large-scale Internet services. In

OSDI ’14.

[14] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. In OSDI ’04.

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner

Vogels. Dynamo: Amazon’s Highly Available Key-value

Store. In SOSP ’07.

[16] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer,

Sriram Rajamani, and Damien Zufferey. P: Safe

Asynchronous Event-Driven Programming. In PLDI ’13.

[17] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:

Understanding the Impact of Limpware on Scale-Out Cloud

Systems. In SoCC ’13.

[18] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou,

and Benjamin Chelf. Bugs as Deviant Behavior: A General

Approach to Inferring Errors in Systems Code. In SOSP,

2001.

[19] Michael D. Ernst, Adam Czeisler, William G. Griswold, and

David Notkin. Quickly Detecting Relevant Program

Invariants. In ICSE, 2000.

[20] Cormac Flanagan and Stephen N. Freund. FastTrack:

Efficient and Precise Dynamic Race Detection. In PLDI,

2009.

[21] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo

Rodrigues. A Study of the Internal and External Effects of

Concurrency Bugs. In DSN, 2010.

[22] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy

Roscoe, and Ion Stoica. Friday: Global Comprehension for

Distributed Replay. In NSDI ’07.

[23] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion

Stoica. Replay Debugging for Distributed Applications. In

USENIX ATC ’06.

[24] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro,

Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, Koushik Sen, and Dhruba Borthakur. FATE

and DESTINI: A Framework for Cloud Recovery Testing. In

NSDI ’11.

[25] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn

Leesatapornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry

Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.

Lukman, Vincentius Martin, and Anang D. Satria. What

Bugs Live in the Cloud? A Study of 3000+ Issues in Cloud

Systems. In SoCC ’14.

[26] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng

Yang, and Lintao Zhang. Practical Software Model Checking

via Dynamic Interface Reduction. In SOSP ’11.

[27] Mingzhe Hao, Gokul Soundararajan, Deepak

Kenchammana-Hosekote, Andrew A. Chien, and Haryadi S.

Gunawi. The Tail at Store: A Revelation from Millions of

Hours of Disk and SSD Deployments. In FAST ’16.

[28] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R.

Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and

Brian Zill. IronFleet: Proving Practical Distributed Systems

Correct. In SOSP ’15.

[29] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali

Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, and

Ion Stoica. Mesos: A Platform for Fine-Grained Resource

Sharing in the Data Center. In NSDI ’11.

[30] Chun-Hung Hsiao, Cristiano L. Pereira, Jie Yu, Gilles A.

Pokam, Satish Narayanasamy, Peter M. Chen, Ziyun Kong,

and Jason Flinn. Race Detection for Event-Driven Mobile

Applications. In PLDI, 2014.

[31] Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D.

Gribble. DDOS: Taming Nondeterminism in Distributed

Systems. In ASPLOS ’13.

[32] Nicholas Jalbert, Cristiano Pereira, Gilles Pokam, and

Koushik Sen. RADBench: A Concurrency Bug Benchmark

Suite. In HotPar, 2011.

[33] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu.

Instrumentation and Sampling Strategies for Cooperative

Concurrency Bug Isolation. In OOPSLA, 2010.

[34] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and

Shan Lu. Automated Concurrency-Bug Fixing. In OSDI,

2012.

[35] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen.

PREFAIL: A Programmable Tool for Multiple-Failure

Injection. In OOPSLA ’11.

13

http://www.freepastry.org/
http://ucare.cs.uchicago.edu/projects/cbs/
http://cassandra.apache.org
http://hadoop.apache.org
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hbase.apache.org
http://zookeeper.apache.org

Appears in the Proceedings of the 21th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16)

[36] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George

Candea. Deadlock Immunity: Enabling Systems To Defend

Against Deadlocks. In OSDI, 2008.

[37] Charles Killian, James W. Anderson, Ranjit Jhala, and Amin

Vahdat. Life, Death, and the Critical Transition: Finding

Liveness Bugs in Systems Code. In NSDI ’07.

[38] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi,

Jeffrey F. Lukman, and Haryadi S. Gunawi. SAMC:

Semantic-Aware Model Checking for Fast Discovery of Deep

Bugs in Cloud Systems. In OSDI ’14.

[39] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo

Lin, Wei Lin, and Tao Xie. A Characteristic Study on

Failures of Production Distributed Data-Parallel Programs.

In ICSE, 2013.

[40] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I.

Jordan. Bug Isolation via Remote Program Sampling. In

PLDI, 2003.

[41] Peng Liu, Omer Tripp, and Charles Zhang. Grail:

Context-Aware Fixing of Concurrency Bugs. In FSE, 2014.

[42] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen,

Xiaochen Lian, Jian Tang, Ming Wu, M. Frans Kaashoek,

and Zheng Zhang. D3S: Debugging Deployed Distributed

Systems. In NSDI ’08.

[43] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang.

WiDS Checker: Combating Bugs in Distributed Systems. In

NSDI ’07.

[44] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, and Shan Lu. A Study of Linux File System

Evolution. In FAST ’13.

[45] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.

Learning from Mistakes — A Comprehensive Study on Real

World Concurrency Bug Characteristics. In ASPLOS ’08.

[46] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou.

AVIO: Detecting Atomicity Violations via Access

Interleaving Invariants. In ASPLOS, 2006.

[47] Brandon Lucia and Luis Ceze. Cooperative Empirical Failure

Avoidance for Multithreaded Programs. In ASPLOS, 2013.

[48] Madanlal Musuvathi and Shaz Qadeer. Iterative Context

Bounding for Systematic Testing of Multithreaded Programs.

In PLDI, 2007.

[49] Diego Ongaro and John Ousterhout. In Search of an

Understandable Consensus Algorithm. In USENIX ATC ’14.

[50] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe

Calvès, Julia Lawall, and Gilles Muller. Faults in Linux: Ten

Years Later. In ASPLOS, 2011.

[51] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger:

Exposing Atomicity Violation Bugs from Their Finding

Places. In ASPLOS, 2009.

[52] Gilles Pokam, Klaus Danne, Cristiano Pereira, Rolf Kassa,

Tim Kranich, Shiliang Hu, Justin Gottschlich, Nima

Honarmand, Nathan Dautenhahn, Samuel T. King, and Josep

Torrellas. QuickRec: Prototyping an Intel Architecture

Extension for Record and Replay of Multithreaded Programs.

In ISCA, 2013.

[53] Shanxiang Qi, Abdullah A. Muzahid, Wonsun Ahn, and

Josep Torrellas. Dynamically Detecting and Tolerating

IF-Condition Data Races. In HPCA, 2014.

[54] Veselin Raychev, Martin T. Vechev, and Manu Sridharan.

Effective race detection for event-driven programs. In

OOPSLA, 2013.

[55] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C.

Mogul, Mehul A. Shah, and Amin Vahdat. Pip: Detecting the

Unexpected in Distributed Systems. In NSDI ’06.

[56] Stefan Savage, Michael Burrows, Greg Nelson, Patrick

Sobalvarro, and Thomas Anderson. Eraser: A Dynamic Data

Race Detector for Multithreaded Programs. ACM TOCS,

1997.

[57] Koushik Sen. Race Directed Random Testing of Concurrent

Programs. In PLDI, 2008.

[58] Koushik Sen and Gul Agha. Automated Systematic Testing

of Open Distributed Programs. In FSE, 2006.

[59] Jiri Simsa, Randy Bryant, and Garth Gibson. dBug:

Systematic Evaluation of Distributed Systems. In SSV ’10.

[60] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,

and Hari Balakrishnan. Chord: A Scalable Peer-to-peer

Lookup Service for Internet Applications. In SIGCOMM ’01.

[61] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester,

Jessica Ouyang, Peter M. Chen, Jason Flinn, and Satish

Narayanasamy. DoublePlay: Parallelizing Sequential

Logging and Replay. In ASPLOS, 2011.

[62] Yin Wang, Terence Kelly, Manjunath Kudlur, Stephane

Lafortune, and Scott Mahlke. Gadara: Dynamic Deadlock

Avoidance for Multithreaded Programs. In OSDI, 2008.

[63] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary

Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson.

Verdi: A Framework for Implementing and Formally

Verifying Distributed System. In PLDI, 2015.

[64] Tian Xiao, Jiaxing Zhang, Hucheng Zhou, Zhenyu Guo, Sean

McDirmid, Wei Lin, Wenguang Chen, and Lidong Zhou.

Nondeterminism in MapReduce Considered Harmful? An

Empirical Study on Non-commutative Aggregators in

MapReduce Programs. In ICSE ’14.

[65] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu,

Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao

Zhang, and Lidong Zhou. MODIST: Transparent Model

Checking of Unmodified Distributed Systems. In NSDI ’09.

[66] Jie Yu. A collection of concurrency bugs.

https://github.com/jieyu/concurrency-bugs.

[67] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna

Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and

Michael Stumm. Simple Testing Can Prevent Most Critical

Failures: An Analysis of Production Failures in Distributed

Data-Intensive Systems. In OSDI ’14.

[68] Wei Zhang, Marc de Kruijf, Ang Li, Shan Lu, and

Karthikeyan Sankaralingam. ConAir: Featherweight

concurrency bug recovery via single-threaded idempotent

execution. In ASPLOS, 2013.

14

	Introduction
	TaxDC
	Summary of Findings

	Methodology
	Basic Definitions
	Target Systems and Dataset
	Taxonomy
	Threats to Validity
	TaxDC Database
	Detailed Terminologies

	Trigger
	Timing Conditions (TC)
	Input Preconditions (IP)
	Triggering Scope (TS)

	Errors and Failures
	Error Symptoms
	Failure Symptoms

	Fixes
	Message Timing Bug Fixes
	Fault/Reboot Timing Bug Fixes

	Root Causes
	Other Statistics
	Lessons Learned
	Fault Paths and Multi-Protocol Interactions
	Distributed Systems Model Checkers
	Domain-Specific Specifications
	Bug Detection Tools
	Failure Diagnosis
	Failure Prevention and Fixing
	Distributed Transactions
	Verifiable Frameworks
	LC bugs vs. DC bugs

	Conclude
	Acknowledgments

